These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 29543882)
1. Reduction of emission level in approach signals of greater mouse-eared bats (Myotis myotis): No evidence for a closed loop control system for intensity compensation. Budenz T; Denzinger A; Schnitzler HU PLoS One; 2018; 13(3):e0194600. PubMed ID: 29543882 [TBL] [Abstract][Full Text] [Related]
2. Intensity control during target approach in echolocating bats; stereotypical sensori-motor behaviour in Daubenton's bats, Myotis daubentonii. Boonman A; Jones G J Exp Biol; 2002 Sep; 205(Pt 18):2865-74. PubMed ID: 12177150 [TBL] [Abstract][Full Text] [Related]
3. Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone. Hiryu S; Hagino T; Riquimaroux H; Watanabe Y J Acoust Soc Am; 2007 Mar; 121(3):1749-57. PubMed ID: 17407911 [TBL] [Abstract][Full Text] [Related]
4. Different auditory feedback control for echolocation and communication in horseshoe bats. Liu Y; Feng J; Metzner W PLoS One; 2013; 8(4):e62710. PubMed ID: 23638137 [TBL] [Abstract][Full Text] [Related]
5. New model for gain control of signal intensity to object distance in echolocating bats. Nørum U; Brinkløv S; Surlykke A J Exp Biol; 2012 Sep; 215(Pt 17):3045-54. PubMed ID: 22875770 [TBL] [Abstract][Full Text] [Related]
6. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude. Hiryu S; Shiori Y; Hosokawa T; Riquimaroux H; Watanabe Y J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454 [TBL] [Abstract][Full Text] [Related]
7. Echo SPL, training experience, and experimental procedure influence the ranging performance in the big brown bat, Eptesicus fuscus. Denzinger A; Schnitzler HU J Comp Physiol A; 1998 Aug; 183(2):213-24. PubMed ID: 9693992 [TBL] [Abstract][Full Text] [Related]
8. Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii. Russo D; Jones G; Arlettaz R J Exp Biol; 2007 Jan; 210(Pt 1):166-76. PubMed ID: 17170159 [TBL] [Abstract][Full Text] [Related]
9. Listening for bats: the hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field. Schul J; Matt F; von Helversen O Proc Biol Sci; 2000 Sep; 267(1454):1711-5. PubMed ID: 12233766 [TBL] [Abstract][Full Text] [Related]
11. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight. Hiryu S; Katsura K; Lin LK; Riquimaroux H; Watanabe Y J Acoust Soc Am; 2005 Dec; 118(6):3927-33. PubMed ID: 16419835 [TBL] [Abstract][Full Text] [Related]
12. Short delays and low pulse amplitudes produce widespread activation in the target-distance processing area of auditory cortex of the mustached bat. Macías S; Hechavarría JC J Acoust Soc Am; 2016 Aug; 140(2):917. PubMed ID: 27586724 [TBL] [Abstract][Full Text] [Related]
13. Delay-tuned combination-sensitive neurons in the auditory cortex of the vocalizing mustached bat. Kawasaki M; Margoliash D; Suga N J Neurophysiol; 1988 Feb; 59(2):623-35. PubMed ID: 3351577 [TBL] [Abstract][Full Text] [Related]
14. Source level reduction and sonar beam aiming in landing big brown bats (Eptesicus fuscus). Koblitz JC; Stilz P; Pflästerer W; Melcón ML; Schnitzler HU J Acoust Soc Am; 2011 Nov; 130(5):3090-9. PubMed ID: 22087937 [TBL] [Abstract][Full Text] [Related]
15. Variability of the approach phase of landing echolocating Greater Mouse-eared bats. Melcón ML; Schnitzler HU; Denzinger A J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jan; 195(1):69-77. PubMed ID: 18998148 [TBL] [Abstract][Full Text] [Related]
16. Automatic gain control in the bat's sonar receiver and the neuroethology of echolocation. Kick SA; Simmons JA J Neurosci; 1984 Nov; 4(11):2725-37. PubMed ID: 6502201 [TBL] [Abstract][Full Text] [Related]
17. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency. Metzner W; Zhang S; Smotherman M J Exp Biol; 2002 Jun; 205(Pt 11):1607-16. PubMed ID: 12000805 [TBL] [Abstract][Full Text] [Related]
18. Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing. Tian B; Schnitzler HU J Acoust Soc Am; 1997 Apr; 101(4):2347-64. PubMed ID: 9104033 [TBL] [Abstract][Full Text] [Related]
19. Echo SPL influences the ranging performance of the big brown bat, Eptesicus fuscus. Denzinger A; Schnitzler HU J Comp Physiol A; 1994 Nov; 175(5):563-71. PubMed ID: 7965921 [TBL] [Abstract][Full Text] [Related]
20. Fine control of call frequency by horseshoe bats. Smotherman M; Metzner W J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jun; 189(6):435-46. PubMed ID: 12761645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]