These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29543903)

  • 1. An automated system for rapid cellular extraction from live zebrafish embryos and larvae: Development and application to genotyping.
    Lambert CJ; Freshner BC; Chung A; Stevenson TJ; Bowles DM; Samuel R; Gale BK; Bonkowsky JL
    PLoS One; 2018; 13(3):e0193180. PubMed ID: 29543903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular and Molecular Characterization of the Effects of the Zebrafish Embryo Genotyper Protocol.
    Douek AM; Klein EI; Kaslin J; Currie PD; Ruparelia AA
    Zebrafish; 2021 Feb; 18(1):92-95. PubMed ID: 33481695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and Efficient Live Zebrafish Embryo Genotyping.
    Zhang X; Zhang Z; Zhao Q; Lou X
    Zebrafish; 2020 Feb; 17(1):56-58. PubMed ID: 31851585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic-aided genotyping of zebrafish in the first 48 h with 100% viability.
    Samuel R; Stephenson R; Roy P; Pryor R; Zhou L; Bonkowsky JL; Gale BK
    Biomed Microdevices; 2015 Apr; 17(2):43. PubMed ID: 25773537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated multi-sample DNA extraction for genotyping live Xenopus embryos.
    Alles N; Guille M; Górecki DC
    Dev Dyn; 2023 Mar; 252(3):429-438. PubMed ID: 36217575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos.
    Akagi J; Khoshmanesh K; Evans B; Hall CJ; Crosier KE; Cooper JM; Crosier PS; Wlodkowic D
    PLoS One; 2012; 7(5):e36630. PubMed ID: 22606275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and efficient zebrafish genotyping using PCR with high-resolution melt analysis.
    Xing L; Quist TS; Stevenson TJ; Dahlem TJ; Bonkowsky JL
    J Vis Exp; 2014 Feb; (84):e51138. PubMed ID: 24561516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for high-throughput PCR-based genotyping of larval zebrafish tail biopsies.
    Wilkinson RN; Elworthy S; Ingham PW; van Eeden FJ
    Biotechniques; 2013 Dec; 55(6):314-6. PubMed ID: 24344681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish Entrapment By Restriction Array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging.
    Bischel LL; Mader BR; Green JM; Huttenlocher A; Beebe DJ
    Lab Chip; 2013 May; 13(9):1732-6. PubMed ID: 23503983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automation of Technology for Cancer Research.
    van der Ent W; Veneman WJ; Groenewoud A; Chen L; Tulotta C; Hogendoorn PC; Spaink HP; Snaar-Jagalska BE
    Adv Exp Med Biol; 2016; 916():315-32. PubMed ID: 27165360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zebrafish embryo development in a microfluidic flow-through system.
    Wielhouwer EM; Ali S; Al-Afandi A; Blom MT; Riekerink MB; Poelma C; Westerweel J; Oonk J; Vrouwe EX; Buesink W; vanMil HG; Chicken J; van't Oever R; Richardson MK
    Lab Chip; 2011 May; 11(10):1815-24. PubMed ID: 21491052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput DNA Extraction and Genotyping of 3dpf Zebrafish Larvae by Fin Clipping.
    Kosuta C; Daniel K; Johnstone DL; Mongeon K; Ban K; LeBlanc S; MacLeod S; Et-Tahiry K; Ekker M; MacKenzie A; Pena I
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 30010654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fish in chips: an automated microfluidic device to study drug dynamics in vivo using zebrafish embryos.
    Zheng C; Zhou H; Liu X; Pang Y; Zhang B; Huang Y
    Chem Commun (Camb); 2014 Jan; 50(8):981-4. PubMed ID: 24305733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated feature detection and imaging for high-resolution screening of zebrafish embryos.
    Peravali R; Gehrig J; Giselbrecht S; Lütjohann DS; Hadzhiev Y; Müller F; Liebel U
    Biotechniques; 2011 May; 50(5):319-24. PubMed ID: 21548893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fishing on chips: up-and-coming technological advances in analysis of zebrafish and Xenopus embryos.
    Zhu F; Skommer J; Huang Y; Akagi J; Adams D; Levin M; Hall CJ; Crosier PS; Wlodkowic D
    Cytometry A; 2014 Nov; 85(11):921-32. PubMed ID: 25287981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining genotypic and phenotypic analyses on single mutant zebrafish larvae.
    Dupret B; Völkel P; Follet P; Le Bourhis X; Angrand PO
    MethodsX; 2018; 5():244-256. PubMed ID: 30090702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney.
    Westhoff JH; Giselbrecht S; Schmidts M; Schindler S; Beales PL; Tönshoff B; Liebel U; Gehrig J
    PLoS One; 2013; 8(12):e82137. PubMed ID: 24324758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic devices for rapid and sensitive identification of organisms.
    Gale BK; Samuel R; Jayamohan H; Sant H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():774-7. PubMed ID: 25570073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of automated imaging and analysis for zebrafish chemical screens.
    Vogt A; Codore H; Day BW; Hukriede NA; Tsang M
    J Vis Exp; 2010 Jun; (40):. PubMed ID: 20613708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotyping live fish larvae: Non-lethal and noninvasive DNA isolation from 3-5 day old hatchlings.
    Espinoza GJ; Poland JM; Bremer JRA
    Biotechniques; 2017 Oct; 63(4):181-186. PubMed ID: 29048270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.