These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In Vivo Mechanical Characterization of the Distraction Callus During Bone Consolidation. Mora-Macías J; Reina-Romo E; López-Pliego M; Giráldez-Sánchez MA; Domínguez J Ann Biomed Eng; 2015 Nov; 43(11):2663-74. PubMed ID: 25956927 [TBL] [Abstract][Full Text] [Related]
3. Comparison of methods for assigning the material properties of the distraction callus in computational models. Mora-Macías J; Giráldez-Sánchez MÁ; López M; Domínguez J; Reina-Romo ME Int J Numer Method Biomed Eng; 2019 Sep; 35(9):e3227. PubMed ID: 31197959 [TBL] [Abstract][Full Text] [Related]
4. Distraction osteogenesis device to estimate the axial stiffness of the callus in Vivo. Mora-Macías J; Reina-Romo E; Domínguez J Med Eng Phys; 2015 Oct; 37(10):969-78. PubMed ID: 26320818 [TBL] [Abstract][Full Text] [Related]
5. An interspecies computational study on limb lengthening. Reina-Romo E; Gómez-Benito MJ; García-Aznar JM; Domínguez J; Doblaré M Proc Inst Mech Eng H; 2010 Nov; 224(11):1245-56. PubMed ID: 21218687 [TBL] [Abstract][Full Text] [Related]
6. The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis. Boccaccio A; Pappalettere C; Kelly DJ Ann Biomed Eng; 2007 Nov; 35(11):1940-60. PubMed ID: 17768683 [TBL] [Abstract][Full Text] [Related]
7. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain. Schuelke J; Meyers N; Reitmaier S; Klose S; Ignatius A; Claes L PLoS One; 2018; 13(4):e0195466. PubMed ID: 29624608 [TBL] [Abstract][Full Text] [Related]
8. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction. Claes L; Meyers N; Schülke J; Reitmaier S; Klose S; Ignatius A PLoS One; 2018; 13(8):e0202702. PubMed ID: 30138362 [TBL] [Abstract][Full Text] [Related]
9. Submuscular plating after distraction osteogenesis in children. Oh CW; Shetty GM; Song HR; Kyung HS; Oh JK; Min WK; Lee BW; Park BC J Pediatr Orthop B; 2008 Sep; 17(5):265-9. PubMed ID: 19471181 [TBL] [Abstract][Full Text] [Related]
11. Stiffness of callus tissue during distraction osteogenesis. Floerkemeier T; Thorey F; Hurschler C; Wellmann M; Witte F; Windhagen H Orthop Traumatol Surg Res; 2010 Apr; 96(2):155-60. PubMed ID: 20417914 [TBL] [Abstract][Full Text] [Related]
12. Bone regeneration and fracture healing. Experience with distraction osteogenesis model. Richards M; Goulet JA; Weiss JA; Waanders NA; Schaffler MB; Goldstein SA Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S191-204. PubMed ID: 9917639 [TBL] [Abstract][Full Text] [Related]
13. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study. Wehner T; Steiner M; Ignatius A; Claes L PLoS One; 2014; 9(12):e115695. PubMed ID: 25532060 [TBL] [Abstract][Full Text] [Related]
14. [Surgical technique for callus distraction]. Hankemeier S; Pape HC; Jagodzinski M; Krettek C Unfallchirurg; 2004 Oct; 107(10):961-4. PubMed ID: 15448924 [No Abstract] [Full Text] [Related]
15. Novel approach to estimate distraction forces in distraction osteogenesis and application in the human lower leg. Bachmeier AT; Euler E; Bader R; Böcker W; Thaller PH J Mech Behav Biomed Mater; 2022 Apr; 128():105133. PubMed ID: 35217291 [TBL] [Abstract][Full Text] [Related]
16. Distraction osteogenesis for the treatment of post traumatic complications using a conventional external fixator. A novel technique. Sangkaew C Injury; 2005 Jan; 36(1):185-93. PubMed ID: 15589939 [TBL] [Abstract][Full Text] [Related]
17. The role of osteogenic index, octahedral shear stress and dilatational stress in the ossification of a fracture callus. Gardner TN; Mishra S; Marks L Med Eng Phys; 2004 Jul; 26(6):493-501. PubMed ID: 15234685 [TBL] [Abstract][Full Text] [Related]
18. Comment on Shyam et al.: Leg lengthening by distraction osteogenesis using the Ilizarov apparatus: a novel concept of tibia callus subsidence and its influencing factors. Gunderson R; Steen H; Horn J; Kristiansen LP; Ludvigsen P; Lamark K Int Orthop; 2010 Jun; 34(5):773-4; author reply 775-6. PubMed ID: 20179924 [No Abstract] [Full Text] [Related]
19. [Callus Distraction in the Treatment of Post-Traumatic Defects of the Femur and Tibia]. Veselý R; Procházka V Acta Chir Orthop Traumatol Cech; 2016; 83(6):388-392. PubMed ID: 28026734 [TBL] [Abstract][Full Text] [Related]
20. [Bone fracture and the healing mechanisms. The mechanical stress for fracture healing in view of distraction osteogenesis]. Yukata K; Takahashi M; Yasui N Clin Calcium; 2009 May; 19(5):641-6. PubMed ID: 19398830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]