BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29543908)

  • 1. Simulating lateral distraction osteogenesis.
    Niemeyer F; Claes L; Ignatius A; Meyers N; Simon U
    PLoS One; 2018; 13(3):e0194500. PubMed ID: 29543908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Mechanical Characterization of the Distraction Callus During Bone Consolidation.
    Mora-Macías J; Reina-Romo E; López-Pliego M; Giráldez-Sánchez MA; Domínguez J
    Ann Biomed Eng; 2015 Nov; 43(11):2663-74. PubMed ID: 25956927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of methods for assigning the material properties of the distraction callus in computational models.
    Mora-Macías J; Giráldez-Sánchez MÁ; López M; Domínguez J; Reina-Romo ME
    Int J Numer Method Biomed Eng; 2019 Sep; 35(9):e3227. PubMed ID: 31197959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distraction osteogenesis device to estimate the axial stiffness of the callus in Vivo.
    Mora-Macías J; Reina-Romo E; Domínguez J
    Med Eng Phys; 2015 Oct; 37(10):969-78. PubMed ID: 26320818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An interspecies computational study on limb lengthening.
    Reina-Romo E; Gómez-Benito MJ; García-Aznar JM; Domínguez J; Doblaré M
    Proc Inst Mech Eng H; 2010 Nov; 224(11):1245-56. PubMed ID: 21218687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of expansion rates on mandibular distraction osteogenesis: a computational analysis.
    Boccaccio A; Pappalettere C; Kelly DJ
    Ann Biomed Eng; 2007 Nov; 35(11):1940-60. PubMed ID: 17768683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain.
    Schuelke J; Meyers N; Reitmaier S; Klose S; Ignatius A; Claes L
    PLoS One; 2018; 13(4):e0195466. PubMed ID: 29624608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction.
    Claes L; Meyers N; Schülke J; Reitmaier S; Klose S; Ignatius A
    PLoS One; 2018; 13(8):e0202702. PubMed ID: 30138362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Submuscular plating after distraction osteogenesis in children.
    Oh CW; Shetty GM; Song HR; Kyung HS; Oh JK; Min WK; Lee BW; Park BC
    J Pediatr Orthop B; 2008 Sep; 17(5):265-9. PubMed ID: 19471181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Principles of callus distraction].
    Hankemeier S; Bastian L; Gosling T; Krettek C
    Unfallchirurg; 2004 Oct; 107(10):945-58; quiz 959. PubMed ID: 15452653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stiffness of callus tissue during distraction osteogenesis.
    Floerkemeier T; Thorey F; Hurschler C; Wellmann M; Witte F; Windhagen H
    Orthop Traumatol Surg Res; 2010 Apr; 96(2):155-60. PubMed ID: 20417914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone regeneration and fracture healing. Experience with distraction osteogenesis model.
    Richards M; Goulet JA; Weiss JA; Waanders NA; Schaffler MB; Goldstein SA
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S191-204. PubMed ID: 9917639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.
    Wehner T; Steiner M; Ignatius A; Claes L
    PLoS One; 2014; 9(12):e115695. PubMed ID: 25532060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Surgical technique for callus distraction].
    Hankemeier S; Pape HC; Jagodzinski M; Krettek C
    Unfallchirurg; 2004 Oct; 107(10):961-4. PubMed ID: 15448924
    [No Abstract]   [Full Text] [Related]  

  • 15. Novel approach to estimate distraction forces in distraction osteogenesis and application in the human lower leg.
    Bachmeier AT; Euler E; Bader R; Böcker W; Thaller PH
    J Mech Behav Biomed Mater; 2022 Apr; 128():105133. PubMed ID: 35217291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distraction osteogenesis for the treatment of post traumatic complications using a conventional external fixator. A novel technique.
    Sangkaew C
    Injury; 2005 Jan; 36(1):185-93. PubMed ID: 15589939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of osteogenic index, octahedral shear stress and dilatational stress in the ossification of a fracture callus.
    Gardner TN; Mishra S; Marks L
    Med Eng Phys; 2004 Jul; 26(6):493-501. PubMed ID: 15234685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comment on Shyam et al.: Leg lengthening by distraction osteogenesis using the Ilizarov apparatus: a novel concept of tibia callus subsidence and its influencing factors.
    Gunderson R; Steen H; Horn J; Kristiansen LP; Ludvigsen P; Lamark K
    Int Orthop; 2010 Jun; 34(5):773-4; author reply 775-6. PubMed ID: 20179924
    [No Abstract]   [Full Text] [Related]  

  • 19. [Callus Distraction in the Treatment of Post-Traumatic Defects of the Femur and Tibia].
    Veselý R; Procházka V
    Acta Chir Orthop Traumatol Cech; 2016; 83(6):388-392. PubMed ID: 28026734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Bone fracture and the healing mechanisms. The mechanical stress for fracture healing in view of distraction osteogenesis].
    Yukata K; Takahashi M; Yasui N
    Clin Calcium; 2009 May; 19(5):641-6. PubMed ID: 19398830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.