These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29543983)

  • 1. Simple, low-cost fabrication of semi-circular channel using the surface tension of solder paste and its application to microfluidic valves.
    Yan S; Li Y; Zhu Y; Liu M; Zhao Q; Yuan D; Yun G; Zhang S; Wen W; Tang SY; Li W
    Electrophoresis; 2018 Jun; 39(12):1460-1465. PubMed ID: 29543983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications.
    Yue W; Li CW; Xu T; Yang M
    Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A screw-actuated pneumatic valve for portable, disposable microfluidics.
    Zheng Y; Dai W; Wu H
    Lab Chip; 2009 Feb; 9(3):469-72. PubMed ID: 19156298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
    Faustino V; Catarino SO; Lima R; Minas G
    J Biomech; 2016 Jul; 49(11):2280-2292. PubMed ID: 26671220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfabrication of cylindrical microfluidic channel networks for microvascular research.
    Huang Z; Li X; Martins-Green M; Liu Y
    Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay.
    Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foil assisted replica molding for fabrication of microfluidic devices and their application in vitro.
    Micheal IJ; Vidyasagar AJ; Bokara KK; Mekala NK; Asthana A; Rao ChM
    Lab Chip; 2014 Oct; 14(19):3695-9. PubMed ID: 25102283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow characterization and patch clamp dose responses using jet microfluidics in a tubeless microfluidic device.
    Resto PJ; Bhat A; Stava E; Lor C; Merriam E; Diaz-Rivera RE; Pearce R; Blick R; Williams JC
    J Neurosci Methods; 2017 Nov; 291():182-189. PubMed ID: 28842193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits.
    Olanrewaju A; Beaugrand M; Yafia M; Juncker D
    Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers.
    Hwang G; Decanini D; Leroy L; Haghiri-Gosnet AM
    Rev Sci Instrum; 2016 Mar; 87(3):036104. PubMed ID: 27036837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production.
    Tsao CW
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft tubular microfluidics for 2D and 3D applications.
    Xi W; Kong F; Yeo JC; Yu L; Sonam S; Dao M; Gong X; Lim CT
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10590-10595. PubMed ID: 28923968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control and automation of multilayered integrated microfluidic device fabrication.
    Kipper S; Frolov L; Guy O; Pellach M; Glick Y; Malichi A; Knisbacher BA; Barbiro-Michaely E; Avrahami D; Yavets-Chen Y; Levanon EY; Gerber D
    Lab Chip; 2017 Jan; 17(3):557-566. PubMed ID: 28102868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow.
    Songok J; Tuominen M; Teisala H; Haapanen J; Mäkelä J; Kuusipalo J; Toivakka M
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20060-6. PubMed ID: 25336235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.