These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29544116)

  • 41. Increasing the Photocatalytic Hydrogen Generation Activity of CdS Nanorods by Introducing Interfacial and Polarization Electric Fields.
    Qi Z; Chen J; Li Q; Wang N; Carabineiro SAC; Lv K
    Small; 2023 Nov; 19(46):e2303318. PubMed ID: 37475483
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Noble-metal-free nickel phosphide modified CdS/C
    Wu T; Wang P; Qian J; Ao Y; Wang C; Hou J
    Dalton Trans; 2017 Oct; 46(40):13793-13801. PubMed ID: 28959817
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visible light photoelectrochemical aptasensor for adenosine detection based on CdS/PPy/g-C3N4 nanocomposites.
    Liu Y; Ma H; Zhang Y; Pang X; Fan D; Wu D; Wei Q
    Biosens Bioelectron; 2016 Dec; 86():439-445. PubMed ID: 27424261
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ultrasound-assisted method to improve the structure of CeO
    Balakumar V; Kim H; Manivannan R; Kim H; Ryu JW; Heo G; Son YA
    Ultrason Sonochem; 2019 Dec; 59():104738. PubMed ID: 31476700
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced photocatalytic H2 production on CdS nanorods with simple molecular bidentate cobalt complexes as cocatalysts under visible light.
    Irfan RM; Jiang D; Sun Z; Lu D; Du P
    Dalton Trans; 2016 Aug; 45(32):12897-905. PubMed ID: 27476445
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polypyrrole-poly(3,4-ethylenedioxythiophene)-Ag (PPy-PEDOT-Ag) nanocomposite films for label-free electrochemical DNA sensing.
    Radhakrishnan S; Sumathi C; Umar A; Jae Kim S; Wilson J; Dharuman V
    Biosens Bioelectron; 2013 Sep; 47():133-40. PubMed ID: 23578969
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag₂S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis.
    Khanchandani S; Srivastava PK; Kumar S; Ghosh S; Ganguli AK
    Inorg Chem; 2014 Sep; 53(17):8902-12. PubMed ID: 25144692
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amorphous tungsten phosphosulphide-modified CdS nanorods as a highly efficient electron-cocatalyst for enhanced photocatalytic hydrogen production.
    Jian Q; Hao X; Jin Z; Ma Q
    Phys Chem Chem Phys; 2020 Jan; 22(4):1932-1943. PubMed ID: 31912807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photocatalytic H
    Park H; Ou HH; Kim M; Kang U; Han DS; Hoffmann MR
    Faraday Discuss; 2017 Jun; 198():419-431. PubMed ID: 28272630
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photochemical shape control of cadmium sulfide nanorods coated with an amorphous silica thin layer.
    Torimoto T; Hashitani M; Konishi T; Okazaki K; Shibayama T; Ohtani B
    J Nanosci Nanotechnol; 2009 Jan; 9(1):506-13. PubMed ID: 19441342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication of a PANI/CPs composite material: a feasible method to enhance the photocatalytic activity of coordination polymers.
    Xu XX; Cui ZP; Qi J; Liu XX
    Dalton Trans; 2013 Mar; 42(11):4031-9. PubMed ID: 23340946
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new class of PANI-Ag core-shell nanorods with sensing dimensions.
    Shukla VK; Yadav P; Yadav RS; Mishra P; Pandey AC
    Nanoscale; 2012 Jul; 4(13):3886-93. PubMed ID: 22669315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sequential Chemistry Toward Core-Shell Structured Metal Sulfides as Stable and Highly Efficient Visible-Light Photocatalysts.
    Zhang X; Liang H; Li H; Xia Y; Zhu X; Peng L; Zhang W; Liu L; Zhao T; Wang C; Zhao Z; Hung CT; Zagho MM; Elzatahry AA; Li W; Zhao D
    Angew Chem Int Ed Engl; 2020 Feb; 59(8):3287-3293. PubMed ID: 31821658
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.
    Wang X; Shih K; Li XY
    Water Sci Technol; 2010; 61(9):2303-8. PubMed ID: 20418627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A general strategy for the enhanced H
    An S; Zhang L; Ding X; Xue Y; Tian J; Qin Y; You J; Wang X; Zhang H
    J Colloid Interface Sci; 2024 Jun; 664():848-856. PubMed ID: 38493650
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation.
    Fang J; Xu L; Zhang Z; Yuan Y; Cao S; Wang Z; Yin L; Liao Y; Xue C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8088-92. PubMed ID: 23865712
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Approach of fermi level and electron-trap level in cadmium sulfide nanorods via molybdenum doping with enhanced carrier separation for boosted photocatalytic hydrogen production.
    Guo C; Tian K; Wang L; Liang F; Wang F; Chen D; Ning J; Zhong Y; Hu Y
    J Colloid Interface Sci; 2021 Feb; 583():661-671. PubMed ID: 33039863
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation.
    Wang JJ; Li ZJ; Li XB; Fan XB; Meng QY; Yu S; Li CB; Li JX; Tung CH; Wu LZ
    ChemSusChem; 2014 May; 7(5):1468-75. PubMed ID: 24692310
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of CdMoO4@CdS core-shell hollow superstructures as high performance visible-light driven photocatalysts.
    Madhusudan P; Zhang J; Cheng B; Yu J
    Phys Chem Chem Phys; 2015 Jun; 17(23):15339-47. PubMed ID: 25998376
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stable hydrogen generation from vermiculite sensitized by CdS quantum dot photocatalytic splitting of water under visible-light irradiation.
    Zhang J; Zhu W; Liu X
    Dalton Trans; 2014 Jun; 43(24):9296-302. PubMed ID: 24819860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.