These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 29544178)

  • 1. Monochloramine loss mechanisms and dissolved organic matter characterization in stormwater.
    Zhang Q; Davies EGR; Bolton JR; Liu Y
    Sci Total Environ; 2018 Aug; 631-632():745-754. PubMed ID: 29544178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field data analysis of active chlorine-containing stormwater samples.
    Zhang Q; Gaafar M; Yang RC; Ding C; Davies EGR; Bolton JR; Liu Y
    J Environ Manage; 2018 Jan; 206():51-59. PubMed ID: 29055849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monochloramine dissipation in storm sewer systems: field testing and model development.
    Zhang Q; Gaafar M; Davies EGR; Bolton JR; Liu Y
    Water Sci Technol; 2018 Dec; 78(11):2279-2287. PubMed ID: 30699079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monochloramine Loss Mechanisms in Tap Water.
    Zhang Q; Davies EGR; Bolton J; Liu Y
    Water Environ Res; 2017 Nov; 89(11):1999-2005. PubMed ID: 28357978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of brominated amines on monochloramine stability during in-line and pre-formed chloramination assessed by kinetic modelling.
    Allard S; Cadee K; Tung R; Croué JP
    Sci Total Environ; 2018 Mar; 618():1431-1439. PubMed ID: 29122349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of iodo-trihalomethanes, iodo-acetic acids, and iodo-acetamides during chloramination of iodide-containing waters: Factors influencing formation and reaction pathways.
    Liu S; Li Z; Dong H; Goodman BA; Qiang Z
    J Hazard Mater; 2017 Jan; 321():28-36. PubMed ID: 27607930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodecomposition of iodinated contrast media and subsequent formation of toxic iodinated moieties during final disinfection with chlorinated oxidants.
    Allard S; Criquet J; Prunier A; Falantin C; Le Person A; Yat-Man Tang J; Croué JP
    Water Res; 2016 Oct; 103():453-461. PubMed ID: 27498253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical Transformation of Monochloramine Induced by Triplet State Dissolved Organic Matter.
    Kong Q; Yao L; Ye L; Pan Y; Deng Y; Tan Z; Zhou Y; Shi G; Yang X
    J Hazard Mater; 2024 Jun; 471():134366. PubMed ID: 38678708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of dissolved organic matter in two alternative water sources: A comparative study between reclaimed water and stormwater.
    Lin S; Chu W; Liu A
    Sci Total Environ; 2022 Dec; 851(Pt 1):158235. PubMed ID: 36007646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemistry of free chlorine and monochloramine and its relevance to the presence of Pb in drinking water.
    Rajasekharan VV; Clark BN; Boonsalee S; Switzer JA
    Environ Sci Technol; 2007 Jun; 41(12):4252-7. PubMed ID: 17626421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing nitro(so) and chloro byproducts and their precursors in natural organic matter during UV/NH
    Li J; Hua Z; Qin W; Chen C; Zhu B; Ruan T; Xiang Y; Fang J
    Water Res; 2024 Jul; 262():122097. PubMed ID: 39018583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.
    Wahman DG; Speitel GE; Machavaram MV
    Water Res; 2014 Sep; 60():218-227. PubMed ID: 24862953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling monochloramine loss in the presence of natural organic matter.
    Duirk SE; Gombert B; Croué JP; Valentine RL
    Water Res; 2005 Sep; 39(14):3418-31. PubMed ID: 16045963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolved Organic Matter-Mediated Photosensitized Activation of Monochloramine for Micropollutant Abatement in Wastewater Effluent.
    Lu S; Peng J; Shang C; Yin R
    Environ Sci Technol; 2024 May; 58(21):9370-9380. PubMed ID: 38743251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in dissolved organic matter fluorescence and disinfection byproduct formation from UV and subsequent chlorination/chloramination.
    Lyon BA; Cory RM; Weinberg HS
    J Hazard Mater; 2014 Jan; 264():411-9. PubMed ID: 24316813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling dichloroacetic acid formation from the reaction of monochloramine with natural organic matter.
    Duirk SE; Valentine RL
    Water Res; 2006 Aug; 40(14):2667-74. PubMed ID: 16824576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Molecular Chemo-diversity of the Dissolved Organic Matter Occurring in Urban Stormwater Runoff].
    Nie YH; Chen H; Li L; Zhu Y; Zhao X; Jia QL; Xu HT; Ye JF
    Huan Jing Ke Xue; 2020 May; 41(5):2272-2280. PubMed ID: 32608845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of organic chloramines during water disinfection: chlorination versus chloramination.
    Lee W; Westerhoff P
    Water Res; 2009 May; 43(8):2233-9. PubMed ID: 19269665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disinfection by-products formation and precursors transformation during chlorination and chloramination of highly-polluted source water: significance of ammonia.
    Tian C; Liu R; Liu H; Qu J
    Water Res; 2013 Oct; 47(15):5901-10. PubMed ID: 23911224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A probabilistic model for assessing uncertainty and sensitivity in the prediction of monochloramine loss in French river waters.
    Ciffroy P; Urien N
    Water Res; 2021 Sep; 202():117383. PubMed ID: 34237692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.