These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 29544200)

  • 1. Cytoskeleton dynamics in axon regeneration.
    Blanquie O; Bradke F
    Curr Opin Neurobiol; 2018 Aug; 51():60-69. PubMed ID: 29544200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration.
    Hur EM; Saijilafu ; Zhou FQ
    Trends Neurosci; 2012 Mar; 35(3):164-74. PubMed ID: 22154154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axon regeneration in the absence of growth cones: acceleration by cyclic AMP.
    Jin LQ; Zhang G; Jamison C; Takano H; Haydon PG; Selzer ME
    J Comp Neurol; 2009 Jul; 515(3):295-312. PubMed ID: 19425080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin dynamics in the growth cone: a key player in axon regeneration.
    Leite SC; Pinto-Costa R; Sousa MM
    Curr Opin Neurobiol; 2021 Aug; 69():11-18. PubMed ID: 33359956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental regulation of sensory axon regeneration in the absence of growth cones.
    Jones SL; Selzer ME; Gallo G
    J Neurobiol; 2006 Dec; 66(14):1630-45. PubMed ID: 17058187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions.
    Horn KP; Busch SA; Hawthorne AL; van Rooijen N; Silver J
    J Neurosci; 2008 Sep; 28(38):9330-41. PubMed ID: 18799667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axon regeneration through scars and into sites of chronic spinal cord injury.
    Lu P; Jones LL; Tuszynski MH
    Exp Neurol; 2007 Jan; 203(1):8-21. PubMed ID: 17014846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration.
    Sandvig A; Berry M; Barrett LB; Butt A; Logan A
    Glia; 2004 May; 46(3):225-51. PubMed ID: 15048847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury.
    He M; Ding Y; Chu C; Tang J; Xiao Q; Luo ZG
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11324-11329. PubMed ID: 27638205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubules, actin and cytolinkers: how to connect cytoskeletons in the neuronal growth cone.
    Pinto-Costa R; Sousa MM
    Neurosci Lett; 2021 Mar; 747():135693. PubMed ID: 33529653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profilin 1 delivery tunes cytoskeletal dynamics toward CNS axon regeneration.
    Pinto-Costa R; Sousa SC; Leite SC; Nogueira-Rodrigues J; Ferreira da Silva T; Machado D; Marques J; Costa AC; Liz MA; Bartolini F; Brites P; Costell M; Fässler R; Sousa MM
    J Clin Invest; 2020 Apr; 130(4):2024-2040. PubMed ID: 31945017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live imaging of regenerating lamprey spinal axons.
    Zhang G; Jin LQ; Sul JY; Haydon PG; Selzer ME
    Neurorehabil Neural Repair; 2005 Mar; 19(1):46-57. PubMed ID: 15673843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Touch and go: guidance cues signal to the growth cone cytoskeleton.
    Kalil K; Dent EW
    Curr Opin Neurobiol; 2005 Oct; 15(5):521-6. PubMed ID: 16143510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of a new growth cone after axotomy: the precursor to axon regeneration.
    Bradke F; Fawcett JW; Spira ME
    Nat Rev Neurosci; 2012 Feb; 13(3):183-93. PubMed ID: 22334213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular dynamics underlying regeneration of damaged axons differs from initial axon development.
    Blizzard CA; Haas MA; Vickers JC; Dickson TC
    Eur J Neurosci; 2007 Sep; 26(5):1100-8. PubMed ID: 17767489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibrotic Scarring and in Rat Spinal Cord Injury In Vivo.
    Vogelaar CF; König B; Krafft S; Estrada V; Brazda N; Ziegler B; Faissner A; Müller HW
    PLoS One; 2015; 10(7):e0134371. PubMed ID: 26222542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traumatology of the optic nerve and contribution of crystallins to axonal regeneration.
    Thanos S; Böhm MR; Schallenberg M; Oellers P
    Cell Tissue Res; 2012 Jul; 349(1):49-69. PubMed ID: 22638995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced regenerative axon growth of multiple fibre populations in traumatic spinal cord injury following scar-suppressing treatment.
    Schiwy N; Brazda N; Müller HW
    Eur J Neurosci; 2009 Oct; 30(8):1544-53. PubMed ID: 19817844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The kinesin-2 family member KIF3C regulates microtubule dynamics and is required for axon growth and regeneration.
    Gumy LF; Chew DJ; Tortosa E; Katrukha EA; Kapitein LC; Tolkovsky AM; Hoogenraad CC; Fawcett JW
    J Neurosci; 2013 Jul; 33(28):11329-45. PubMed ID: 23843507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.