These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29544259)

  • 1. Bulk dynamics of Brownian hard disks: Dynamical density functional theory versus experiments on two-dimensional colloidal hard spheres.
    Stopper D; Thorneywork AL; Dullens RPA; Roth R
    J Chem Phys; 2018 Mar; 148(10):104501. PubMed ID: 29544259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The van Hove distribution function for brownian hard spheres: dynamical test particle theory and computer simulations for bulk dynamics.
    Hopkins P; Fortini A; Archer AJ; Schmidt M
    J Chem Phys; 2010 Dec; 133(22):224505. PubMed ID: 21171689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling diffusion in colloidal suspensions by dynamical density functional theory using fundamental measure theory of hard spheres.
    Stopper D; Marolt K; Roth R; Hansen-Goos H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022151. PubMed ID: 26382387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Communication: Dynamical density functional theory for dense suspensions of colloidal hard spheres.
    Stopper D; Roth R; Hansen-Goos H
    J Chem Phys; 2015 Nov; 143(18):181105. PubMed ID: 26567639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural relaxation and diffusion in a model colloid-polymer mixture: dynamical density functional theory and simulation.
    Stopper D; Roth R; Hansen-Goos H
    J Phys Condens Matter; 2016 Nov; 28(45):455101. PubMed ID: 27608916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Hydrodynamic Interactions on Self-Diffusion of Quasi-Two-Dimensional Colloidal Hard Spheres.
    Thorneywork AL; Rozas RE; Dullens RP; Horbach J
    Phys Rev Lett; 2015 Dec; 115(26):268301. PubMed ID: 26765032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freezing transition and correlated motion in a quasi-two-dimensional colloid suspension.
    Zangi R; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061508. PubMed ID: 14754213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics in inhomogeneous liquids and glasses via the test particle limit.
    Archer AJ; Hopkins P; Schmidt M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):040501. PubMed ID: 17500852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of activated dynamics and glass transition of hard colloids in two dimensions.
    Zhang BK; Li HS; Tian WD; Chen K; Ma YQ
    J Chem Phys; 2014 Mar; 140(9):094506. PubMed ID: 24606367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active interaction switching controls the dynamic heterogeneity of soft colloidal dispersions.
    Bley M; Hurtado PI; Dzubiella J; Moncho-Jordá A
    Soft Matter; 2022 Jan; 18(2):397-411. PubMed ID: 34904609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental observations of non-Gaussian behavior and stringlike cooperative dynamics in concentrated quasi-two-dimensional colloidal liquids.
    Marcus AH; Schofield J; Rice SA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5725-36. PubMed ID: 11970468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.
    Banchio AJ; Heinen M; Holmqvist P; Nägele G
    J Chem Phys; 2018 Apr; 148(13):134902. PubMed ID: 29626910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-ideal diffusion effects, short-range ordering, and unsteady-state effects strongly influence Brownian aggregation rates in concentrated dispersions of interacting spheres.
    Kelkar AV; Franses EI; Corti DS
    J Chem Phys; 2015 Aug; 143(7):074706. PubMed ID: 26298147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Gaussian approximation in colloidal hard sphere fluids.
    Thorneywork AL; Aarts DG; Horbach J; Dullens RP
    Soft Matter; 2016 May; 12(18):4129-34. PubMed ID: 27064930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-time dynamics of colloidal particles confined between two walls.
    Santana-Solano J; Arauz-Lara JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021406. PubMed ID: 11863522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.
    Weysser F; Puertas AM; Fuchs M; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011504. PubMed ID: 20866622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-time diffusion in concentrated bidisperse hard-sphere suspensions.
    Wang M; Heinen M; Brady JF
    J Chem Phys; 2015 Feb; 142(6):064905. PubMed ID: 25681941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of localized particles from density functional theory.
    Reinhardt J; Brader JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011404. PubMed ID: 22400570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stokesian dynamics study of quasi-two-dimensional suspensions confined between two parallel walls.
    Pesche R; Nagele G
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Oct; 62(4 Pt B):5432-43. PubMed ID: 11089106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superadiabatic dynamical density functional study of Brownian hard-spheres in time-dependent external potentials.
    Tschopp SM; Vuijk HD; Brader JM
    J Chem Phys; 2023 Jun; 158(23):. PubMed ID: 37341293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.