These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29544276)

  • 1. String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt.
    Pazmiño Betancourt BA; Starr FW; Douglas JF
    J Chem Phys; 2018 Mar; 148(10):104508. PubMed ID: 29544276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast dynamics in a model metallic glass-forming material.
    Zhang H; Wang X; Yu HB; Douglas JF
    J Chem Phys; 2021 Feb; 154(8):084505. PubMed ID: 33639730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. String-like collective atomic motion in the melting and freezing of nanoparticles.
    Zhang H; Kalvapalle P; Douglas JF
    J Phys Chem B; 2011 Dec; 115(48):14068-76. PubMed ID: 21718061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. String-like collective motion and diffusion in the interfacial region of ice.
    Wang X; Tong X; Zhang H; Douglas JF
    J Chem Phys; 2017 Nov; 147(19):194508. PubMed ID: 29166091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials.
    Pazmiño Betancourt BA; Hanakata PZ; Starr FW; Douglas JF
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):2966-71. PubMed ID: 25713371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.
    Xie SJ; Qian HJ; Lu ZY
    J Chem Phys; 2014 Jan; 140(4):044901. PubMed ID: 25669577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation.
    Kuhnhold A; Paul W
    J Chem Phys; 2014 Sep; 141(12):124907. PubMed ID: 25273474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relating dynamic free volume to cooperative relaxation in a glass-forming polymer composite.
    McKenzie-Smith T; Douglas JF; Starr FW
    J Chem Phys; 2022 Oct; 157(13):131101. PubMed ID: 36209017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unifying framework to quantify the effects of substrate interactions, stiffness, and roughness on the dynamics of thin supported polymer films.
    Hanakata PZ; Pazmiño Betancourt BA; Douglas JF; Starr FW
    J Chem Phys; 2015 Jun; 142(23):234907. PubMed ID: 26093579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic heterogeneity and collective motion in star polymer melts.
    Fan J; Emamy H; Chremos A; Douglas JF; Starr FW
    J Chem Phys; 2020 Feb; 152(5):054904. PubMed ID: 32035474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MD simulation of concentrated polymer solutions: structural relaxation near the glass transition.
    Peter S; Meyer H; Baschnagel J
    Eur Phys J E Soft Matter; 2009 Feb; 28(2):147-58. PubMed ID: 18850324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. String-like cooperative motion in homogeneous melting.
    Zhang H; Khalkhali M; Liu Q; Douglas JF
    J Chem Phys; 2013 Mar; 138(12):12A538. PubMed ID: 23556789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-motion in glass-forming polymers: a molecular dynamics study.
    van Zon A; de Leeuw SW
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):6942-50. PubMed ID: 11970631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts.
    Schweizer KS; Saltzman EJ
    J Chem Phys; 2004 Jul; 121(4):1984-2000. PubMed ID: 15260751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys.
    Zhang H; Zhong C; Douglas JF; Wang X; Cao Q; Zhang D; Jiang JZ
    J Chem Phys; 2015 Apr; 142(16):164506. PubMed ID: 25933773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics.
    Wang JG; Li Q; Peng X; McKenna GB; Zia RN
    Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activated penetrant dynamics in glass forming liquids: size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility.
    Mei B; Schweizer KS
    Soft Matter; 2021 Mar; 17(9):2624-2639. PubMed ID: 33528485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive relation for the α-relaxation time of a coarse-grained polymer melt under steady shear.
    Giuntoli A; Puosi F; Leporini D; Starr FW; Douglas JF
    Sci Adv; 2020 Apr; 6(17):eaaz0777. PubMed ID: 32494635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling between relaxation, transport, and caged dynamics in polymers: from cage restructuring to diffusion.
    Puosi F; Leporini D
    J Phys Chem B; 2011 Dec; 115(48):14046-51. PubMed ID: 21793599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glassy Interfacial Dynamics of Ni Nanoparticles: Part II Discrete Breathers as an Explanation of Two-Level Energy Fluctuations.
    Zhang H; Douglas JF
    Soft Matter; 2013 Jan; 9(4):1266-1280. PubMed ID: 23585770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.