BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 29544529)

  • 41. Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings.
    Tang M; Mao D; Xu L; Li D; Song S; Chen C
    BMC Genomics; 2014 Oct; 15(1):835. PubMed ID: 25273267
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice.
    Yang C; Ma B; He SJ; Xiong Q; Duan KX; Yin CC; Chen H; Lu X; Chen SY; Zhang JS
    Plant Physiol; 2015 Sep; 169(1):148-65. PubMed ID: 25995326
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Complementary RNA-Sequencing Based Transcriptomics and iTRAQ Proteomics Reveal the Mechanism of the Alleviation of Quinclorac Stress by Salicylic Acid in Oryza sativa ssp. japonica.
    Wang J; Islam F; Li L; Long M; Yang C; Jin X; Ali B; Mao B; Zhou W
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28906478
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of microRNAs responding to cold stress in Dongxiang common wild rice.
    Jiang W; Shi W; Ma X; Zhao J; Wang S; Tan L; Sun C; Liu F
    Genome; 2019 Sep; 62(9):635-642. PubMed ID: 31283885
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses.
    Moons A
    Planta; 2008 Dec; 229(1):53-71. PubMed ID: 18830621
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gene expression analysis in response to low and high temperature and oxidative stresses in rice: combination of stresses evokes different transcriptional changes as against stresses applied individually.
    Mittal D; Madhyastha DA; Grover A
    Plant Sci; 2012 Dec; 197():102-13. PubMed ID: 23116677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification, Analysis, and Confirmation of Seed Storability-Related Loci in Dongxiang Wild Rice (
    Zhao M; Hu B; Fan Y; Ding G; Yang W; Chen Y; Chen Y; Xie J; Zhang F
    Genes (Basel); 2021 Nov; 12(11):. PubMed ID: 34828437
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Iron and callose homeostatic regulation in rice roots under low phosphorus.
    Ding Y; Wang Z; Ren M; Zhang P; Li Z; Chen S; Ge C; Wang Y
    BMC Plant Biol; 2018 Dec; 18(1):326. PubMed ID: 30514218
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice.
    Chung PJ; Jung H; Jeong DH; Ha SH; Choi YD; Kim JK
    BMC Genomics; 2016 Aug; 17():563. PubMed ID: 27501838
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Methylation Patterns and Transcriptional Responses to Chilling Stress at the Seedling Stage in Rice.
    Guo H; Wu T; Li S; He Q; Yang Z; Zhang W; Gan Y; Sun P; Xiang G; Zhang H; Deng H
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31615063
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline-alkaline stress.
    Li Q; Ma C; Tai H; Qiu H; Yang A
    PLoS One; 2020; 15(12):e0243112. PubMed ID: 33259539
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of drought-responsive signalling network in two contrasting rice cultivars using transcriptome-based approach.
    Borah P; Sharma E; Kaur A; Chandel G; Mohapatra T; Kapoor S; Khurana JP
    Sci Rep; 2017 Feb; 7():42131. PubMed ID: 28181537
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.
    Mao D; Yu L; Chen D; Li L; Zhu Y; Xiao Y; Zhang D; Chen C
    Theor Appl Genet; 2015 Jul; 128(7):1359-71. PubMed ID: 25862679
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses.
    Shankar R; Bhattacharjee A; Jain M
    Sci Rep; 2016 Mar; 6():23719. PubMed ID: 27029818
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice.
    Wu TM; Lin WR; Kao CH; Hong CY
    Plant Mol Biol; 2015 Apr; 87(6):555-64. PubMed ID: 25636203
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcriptome analysis of rice root responses to potassium deficiency.
    Ma TL; Wu WH; Wang Y
    BMC Plant Biol; 2012 Sep; 12():161. PubMed ID: 22963580
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptome Analysis of Rice Seedling Roots in Response to Potassium Deficiency.
    Zhang X; Jiang H; Wang H; Cui J; Wang J; Hu J; Guo L; Qian Q; Xue D
    Sci Rep; 2017 Jul; 7(1):5523. PubMed ID: 28717149
    [TBL] [Abstract][Full Text] [Related]  

  • 58. De Novo Transcriptome Sequencing of Oryza officinalis Wall ex Watt to Identify Disease-Resistance Genes.
    He B; Gu Y; Tao X; Cheng X; Wei C; Fu J; Cheng Z; Zhang Y
    Int J Mol Sci; 2015 Dec; 16(12):29482-95. PubMed ID: 26690414
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expression of potential reference genes in response to macronutrient stress in rice and soybean.
    Sharma S; Vengavasi K; Kumar MN; Yadav SK; Pandey R
    Gene; 2021 Aug; 792():145742. PubMed ID: 34051336
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A transcriptomic (RNA-seq) analysis of genes responsive to both cadmium and arsenic stress in rice root.
    Huang Y; Chen H; Reinfelder JR; Liang X; Sun C; Liu C; Li F; Yi J
    Sci Total Environ; 2019 May; 666():445-460. PubMed ID: 30802660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.