These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 29544783)

  • 1. Hard exudates segmentation based on learned initial seeds and iterative graph cut.
    Kusakunniran W; Wu Q; Ritthipravat P; Zhang J
    Comput Methods Programs Biomed; 2018 May; 158():173-183. PubMed ID: 29544783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images.
    Kadan AB; Subbian PS
    J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep image mining for diabetic retinopathy screening.
    Quellec G; Charrière K; Boudi Y; Cochener B; Lamard M
    Med Image Anal; 2017 Jul; 39():178-193. PubMed ID: 28511066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening.
    Wang H; Yuan G; Zhao X; Peng L; Wang Z; He Y; Qu C; Peng Z
    Comput Methods Programs Biomed; 2020 Jul; 191():105398. PubMed ID: 32092614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Approach for Detection of Hard Exudates Using Random Forest Classifier.
    Pratheeba C; Singh NN
    J Med Syst; 2019 May; 43(7):180. PubMed ID: 31093787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms.
    Khojasteh P; Aliahmad B; Kumar DK
    BMC Ophthalmol; 2018 Nov; 18(1):288. PubMed ID: 30400869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exudate detection in color retinal images for mass screening of diabetic retinopathy.
    Zhang X; Thibault G; Decencière E; Marcotegui B; Laÿ B; Danno R; Cazuguel G; Quellec G; Lamard M; Massin P; Chabouis A; Victor Z; Erginay A
    Med Image Anal; 2014 Oct; 18(7):1026-43. PubMed ID: 24972380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis.
    Sánchez CI; Hornero R; López MI; Aboy M; Poza J; Abásolo D
    Med Eng Phys; 2008 Apr; 30(3):350-7. PubMed ID: 17556004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal image analysis based on mixture models to detect hard exudates.
    Sánchez CI; García M; Mayo A; López MI; Hornero R
    Med Image Anal; 2009 Aug; 13(4):650-8. PubMed ID: 19539518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation.
    Long S; Huang X; Chen Z; Pardhan S; Zheng D
    Biomed Res Int; 2019; 2019():3926930. PubMed ID: 30809539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Approach to Automatic Hard Exudate Detection in Retina Color Images by a Telemedicine System Based on the d-Eye Sensor and Image Processing Algorithms.
    Saeed E; Szymkowski M; Saeed K; Mariak Z
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ensemble classification of exudates in color fundus images using an evolutionary algorithm based optimal features selection.
    Ullah H; Saba T; Islam N; Abbas N; Rehman A; Mehmood Z; Anjum A
    Microsc Res Tech; 2019 Apr; 82(4):361-372. PubMed ID: 30677193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exudates Segmentation using Fully Convolutional Neural Network and Auxiliary Codebook.
    Chudzik P; Al-Diri B; Caliva F; Ometto G; Hunter A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():770-773. PubMed ID: 30440508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images.
    Osareh A; Shadgar B; Markham R
    IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):535-45. PubMed ID: 19586814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel method for retinal exudate segmentation using signal separation algorithm.
    Imani E; Pourreza HR
    Comput Methods Programs Biomed; 2016 Sep; 133():195-205. PubMed ID: 27393810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-segmentation of retinal image lesions in diabetic retinopathy using energy-based fuzzy C-Means clustering (EFM-FCM).
    Naz H; Nijhawan R; Ahuja NJ; Saba T; Alamri FS; Rehman A
    Microsc Res Tech; 2024 Jan; 87(1):78-94. PubMed ID: 37681440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy.
    Romero-Oraá R; García M; Oraá-Pérez J; López-Gálvez MI; Hornero R
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33207825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.
    Jaya T; Dheeba J; Singh NA
    J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.