These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29545127)

  • 1. A supermicrosurgery training model using the chicken mid and lower wing.
    Hayashi K; Hattori Y; Yii Chia DS; Sakamoto S; Marei A; Doi K
    J Plast Reconstr Aesthet Surg; 2018 Jun; 71(6):943-945. PubMed ID: 29545127
    [No Abstract]   [Full Text] [Related]  

  • 2. A novel supermicrosurgery training model: the chicken thigh.
    Chen WF; Eid A; Yamamoto T; Keith J; Nimmons GL; Lawrence WT
    J Plast Reconstr Aesthet Surg; 2014 Jul; 67(7):973-8. PubMed ID: 24742690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Ex Vivo Training Model for Acquiring Supermicrosurgical Skills Using a Chicken Leg.
    Cifuentes IJ; Rodriguez JR; Yañez RA; Salisbury MC; Cuadra ÁJ; Varas JE; Dagnino BL
    J Reconstr Microsurg; 2016 Nov; 32(9):699-705. PubMed ID: 27542106
    [No Abstract]   [Full Text] [Related]  

  • 4. A basic experimental model for end-to-end anastomosis of vessels with diameter discrepancy.
    Bayramiçli M; Sirinoğlu H; Yalçin D
    Microsurgery; 2014 May; 34(4):333-4. PubMed ID: 24500737
    [No Abstract]   [Full Text] [Related]  

  • 5. Simple and viable in vitro perfusion model for training microvascular anastomoses.
    Krishnan KG; Dramm P; Schackert G
    Microsurgery; 2004; 24(4):335-8. PubMed ID: 15274194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training in microvascular surgery using a chicken wing artery.
    Hino A
    Neurosurgery; 2003 Jun; 52(6):1495-7; discussion 1497-8. PubMed ID: 12762899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative use of turkey and chicken wing brachial artery models for microvascular anastomosis training.
    Abla AA; Uschold T; Preul MC; Zabramski JM
    J Neurosurg; 2011 Dec; 115(6):1231-5. PubMed ID: 21962125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refinement of the chicken wing supermicrosurgical training model: Pre-operative indocyanide green injection highlighting vessels' visualization under 0.4 mm of diameter.
    Ganry L; Fuse Y; Sakai H; Reiko T; Yamamoto T
    Microsurgery; 2019 Mar; 39(3):280-281. PubMed ID: 30666701
    [No Abstract]   [Full Text] [Related]  

  • 9. Validation of a chicken wing training model for endoscopic microsurgical dissection.
    Kaplan DJ; Vaz-Guimaraes F; Fernandez-Miranda JC; Snyderman CH
    Laryngoscope; 2015 Mar; 125(3):571-6. PubMed ID: 25417605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supermicrovascular anastomosis training using chicken wings and colored water.
    Kondo A; Umezawa H; Fukunaga Y; Oshima A; Higashino T; Ogawa R
    J Plast Reconstr Aesthet Surg; 2023 Sep; 84():531-536. PubMed ID: 37421676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microsurgical training using a pulsatile membrane pump and chicken thigh: a new, realistic, practical, nonliving educational model.
    Phoon AF; Gumley GJ; Rtshiladze MA
    Plast Reconstr Surg; 2010 Nov; 126(5):278e-279e. PubMed ID: 21042094
    [No Abstract]   [Full Text] [Related]  

  • 12. Experimental model for learning in vascular surgery and microsurgery: esophagus and trachea of chicken.
    Achar RA; Lozano PA; Achar BN; Pereira Filho GV; Achar E
    Acta Cir Bras; 2011 Apr; 26(2):101-6. PubMed ID: 21445471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsurgical training model using chicken thigh.
    Menovsky T
    Plast Reconstr Surg; 2011 Aug; 128(2):609-610. PubMed ID: 21788886
    [No Abstract]   [Full Text] [Related]  

  • 14. Basic training model for supermicrosurgery: a novel practice card model.
    Matsumura N; Horie Y; Shibata T; Kubo M; Hayashi N; Endo S
    J Reconstr Microsurg; 2011 Jul; 27(6):377-82. PubMed ID: 21717391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ventral metacarpal artery of chicken wings for microsurgery and supermicrosurgery training.
    Yoshikawa Y; Sakai H
    J Plast Reconstr Aesthet Surg; 2023 Dec; 87():316-317. PubMed ID: 37925921
    [No Abstract]   [Full Text] [Related]  

  • 16. Fowl surgery at sea. Proving a microvascular capability in PCRF.
    Smith JJ; Scerri GV; Rickard RF
    J R Nav Med Serv; 2008; 94(1):14-8. PubMed ID: 18524135
    [No Abstract]   [Full Text] [Related]  

  • 17. Effectiveness of a microsurgery training program using a chicken wing model.
    Dave A; Singhal M; Tiwari R; Chauhan S; De M
    J Plast Surg Hand Surg; 2022 Aug; 56(4):191-197. PubMed ID: 34339351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsurgical training on an in vitro chicken wing infusion model.
    Olabe J; Olabe J
    Surg Neurol; 2009 Dec; 72(6):695-9. PubMed ID: 19329164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new training method to improve deep microsurgical skills using a mannequin head.
    Takeuchi M; Hayashi N; Hamada H; Matsumura N; Nishijo H; Endo S
    Microsurgery; 2008; 28(3):168-70. PubMed ID: 18286651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acquisition of basic microsurgery skills using home-based simulation training: A randomised control study.
    Malik MM; Hachach-Haram N; Tahir M; Al-Musabi M; Masud D; Mohanna PN
    J Plast Reconstr Aesthet Surg; 2017 Apr; 70(4):478-486. PubMed ID: 28161208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.