BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 29545179)

  • 1. An FBXO40 knockout generated by CRISPR/Cas9 causes muscle hypertrophy in pigs without detectable pathological effects.
    Zou Y; Li Z; Zou Y; Hao H; Li N; Li Q
    Biochem Biophys Res Commun; 2018 Apr; 498(4):940-945. PubMed ID: 29545179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling.
    Shi J; Luo L; Eash J; Ibebunjo C; Glass DJ
    Dev Cell; 2011 Nov; 21(5):835-47. PubMed ID: 22033112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stat3 activation induces insulin resistance via a muscle-specific E3 ubiquitin ligase Fbxo40.
    Zhang L; Chen Z; Wang Y; Tweardy DJ; Mitch WE
    Am J Physiol Endocrinol Metab; 2020 May; 318(5):E625-E635. PubMed ID: 32101031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Generation of Myostatin Gene Mutated Rabbit by CRISPR/Cas9.
    Lv Q; Yuan L; Deng J; Chen M; Wang Y; Zeng J; Li Z; Lai L
    Sci Rep; 2016 Apr; 6():25029. PubMed ID: 27113799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FBXO40, a gene encoding a novel muscle-specific F-box protein, is upregulated in denervation-related muscle atrophy.
    Ye J; Zhang Y; Xu J; Zhang Q; Zhu D
    Gene; 2007 Dec; 404(1-2):53-60. PubMed ID: 17928169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs.
    Wang K; Tang X; Xie Z; Zou X; Li M; Yuan H; Guo N; Ouyang H; Jiao H; Pang D
    Transgenic Res; 2017 Dec; 26(6):799-805. PubMed ID: 28993973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning.
    Gao H; Zhao C; Xiang X; Li Y; Zhao Y; Li Z; Pan D; Dai Y; Hara H; Cooper DK; Cai Z; Mou L
    J Reprod Dev; 2017 Feb; 63(1):17-26. PubMed ID: 27725344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes.
    Petersen B; Frenzel A; Lucas-Hahn A; Herrmann D; Hassel P; Klein S; Ziegler M; Hadeler KG; Niemann H
    Xenotransplantation; 2016 Sep; 23(5):338-46. PubMed ID: 27610605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP.
    Bi Y; Hua Z; Liu X; Hua W; Ren H; Xiao H; Zhang L; Li L; Wang Z; Laible G; Wang Y; Dong F; Zheng X
    Sci Rep; 2016 Aug; 6():31729. PubMed ID: 27530319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Generation of Myostatin Mutations in Pigs Using the CRISPR/Cas9 System.
    Wang K; Ouyang H; Xie Z; Yao C; Guo N; Li M; Jiao H; Pang D
    Sci Rep; 2015 Nov; 5():16623. PubMed ID: 26564781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting.
    Kang JT; Ryu J; Cho B; Lee EJ; Yun YJ; Ahn S; Lee J; Ji DY; Lee K; Park KW
    Reprod Domest Anim; 2016 Dec; 51(6):970-978. PubMed ID: 27696566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of insulin-deficient piglets by disrupting INS gene using CRISPR/Cas9 system.
    Cho B; Kim SJ; Lee EJ; Ahn SM; Lee JS; Ji DY; Lee K; Kang JT
    Transgenic Res; 2018 Jun; 27(3):289-300. PubMed ID: 29691708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Genome Editing via CRISPR/Cas9 to Create Clock Gene Knockout Cells.
    Korge S; Grudziecki A; Kramer A
    J Biol Rhythms; 2015 Oct; 30(5):389-95. PubMed ID: 26243628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs.
    Kang JT; Cho B; Ryu J; Ray C; Lee EJ; Yun YJ; Ahn S; Lee J; Ji DY; Jue N; Clark-Deener S; Lee K; Park KW
    Reprod Biol Endocrinol; 2016 Nov; 14(1):74. PubMed ID: 27809915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene.
    Park KE; Kaucher AV; Powell A; Waqas MS; Sandmaier SE; Oatley MJ; Park CH; Tibary A; Donovan DM; Blomberg LA; Lillico SG; Whitelaw CB; Mileham A; Telugu BP; Oatley JM
    Sci Rep; 2017 Jan; 7():40176. PubMed ID: 28071690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of site-specific mutant mice using the CRISPR/Cas9 system.
    Bai M; Li Q; Shao YJ; Huang YH; Li DL; Ma YL
    Yi Chuan; 2015 Oct; 37(10):1029-35. PubMed ID: 26496755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes.
    Crispo M; Mulet AP; Tesson L; Barrera N; Cuadro F; dos Santos-Neto PC; Nguyen TH; Crénéguy A; Brusselle L; Anegón I; Menchaca A
    PLoS One; 2015; 10(8):e0136690. PubMed ID: 26305800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of a skeletal muscle-specific enhancer in the regulatory region of Igf1 upregulates IGF1 expression and induces skeletal muscle hypertrophy.
    Zou Y; Dong Y; Meng Q; Zhao Y; Li N
    Sci Rep; 2018 Feb; 8(1):2781. PubMed ID: 29426944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of GGTA1 Mutant Pigs by Direct Pronuclear Microinjection of CRISPR/Cas9 Plasmid Vectors.
    Chuang CK; Chen CH; Huang CL; Su YH; Peng SH; Lin TY; Tai HC; Yang TS; Tu CF
    Anim Biotechnol; 2017 Jul; 28(3):174-181. PubMed ID: 27834588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts.
    Sato M; Miyoshi K; Nagao Y; Nishi Y; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Xenotransplantation; 2014; 21(3):291-300. PubMed ID: 24919525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.