BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 29545368)

  • 1. The COMMD Family Regulates Plasma LDL Levels and Attenuates Atherosclerosis Through Stabilizing the CCC Complex in Endosomal LDLR Trafficking.
    Fedoseienko A; Wijers M; Wolters JC; Dekker D; Smit M; Huijkman N; Kloosterhuis N; Klug H; Schepers A; Willems van Dijk K; Levels JHM; Billadeau DD; Hofker MH; van Deursen J; Westerterp M; Burstein E; Kuivenhoven JA; van de Sluis B
    Circ Res; 2018 Jun; 122(12):1648-1660. PubMed ID: 29545368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL.
    Bartuzi P; Billadeau DD; Favier R; Rong S; Dekker D; Fedoseienko A; Fieten H; Wijers M; Levels JH; Huijkman N; Kloosterhuis N; van der Molen H; Brufau G; Groen AK; Elliott AM; Kuivenhoven JA; Plecko B; Grangl G; McGaughran J; Horton JD; Burstein E; Hofker MH; van de Sluis B
    Nat Commun; 2016 Mar; 7():10961. PubMed ID: 26965651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of murine copper homeostasis by members of the COMMD protein family.
    Singla A; Chen Q; Suzuki K; Song J; Fedoseienko A; Wijers M; Lopez A; Billadeau DD; van de Sluis B; Burstein E
    Dis Model Mech; 2021 Jan; 14(1):. PubMed ID: 33262129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A.
    Phillips-Krawczak CA; Singla A; Starokadomskyy P; Deng Z; Osborne DG; Li H; Dick CJ; Gomez TS; Koenecke M; Zhang JS; Dai H; Sifuentes-Dominguez LF; Geng LN; Kaufmann SH; Hein MY; Wallis M; McGaughran J; Gecz J; Sluis Bv; Billadeau DD; Burstein E
    Mol Biol Cell; 2015 Jan; 26(1):91-103. PubMed ID: 25355947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling.
    Li H; Koo Y; Mao X; Sifuentes-Dominguez L; Morris LL; Jia D; Miyata N; Faulkner RA; van Deursen JM; Vooijs M; Billadeau DD; van de Sluis B; Cleaver O; Burstein E
    J Cell Biol; 2015 Nov; 211(3):605-17. PubMed ID: 26553930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cargo-Specific Role for Retriever Subunit VPS26C in Hepatocyte Lipoprotein Receptor Recycling to Control Postprandial Triglyceride-Rich Lipoproteins.
    Vos DY; Wijers M; Smit M; Huijkman N; Kloosterhuis NJ; Wolters JC; Tissink JJ; Pronk ACM; Kooijman S; Rensen PCN; Kuivenhoven JA; van de Sluis B
    Arterioscler Thromb Vasc Biol; 2023 Jan; 43(1):e29-e45. PubMed ID: 36353989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endosomal PI(3)P regulation by the COMMD/CCDC22/CCDC93 (CCC) complex controls membrane protein recycling.
    Singla A; Fedoseienko A; Giridharan SSP; Overlee BL; Lopez A; Jia D; Song J; Huff-Hardy K; Weisman L; Burstein E; Billadeau DD
    Nat Commun; 2019 Sep; 10(1):4271. PubMed ID: 31537807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The adaptor protein PID1 regulates receptor-dependent endocytosis of postprandial triglyceride-rich lipoproteins.
    Fischer AW; Albers K; Krott LM; Hoffzimmer B; Heine M; Schmale H; Scheja L; Gordts PLSM; Heeren J
    Mol Metab; 2018 Oct; 16():88-99. PubMed ID: 30100244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol.
    Xu YX; Redon V; Yu H; Querbes W; Pirruccello J; Liebow A; Deik A; Trindade K; Wang X; Musunuru K; Clish CB; Cowan C; Fizgerald K; Rader D; Kathiresan S
    Atherosclerosis; 2018 Jan; 268():196-206. PubMed ID: 29183623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the endosomal Commander complex linked to Ritscher-Schinzel syndrome.
    Healy MD; McNally KE; Butkovič R; Chilton M; Kato K; Sacharz J; McConville C; Moody ERR; Shaw S; Planelles-Herrero VJ; Yadav SKN; Ross J; Borucu U; Palmer CS; Chen KE; Croll TI; Hall RJ; Caruana NJ; Ghai R; Nguyen THD; Heesom KJ; Saitoh S; Berger I; Schaffitzel C; Williams TA; Stroud DA; Derivery E; Collins BM; Cullen PJ
    Cell; 2023 May; 186(10):2219-2237.e29. PubMed ID: 37172566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever.
    Chen KE; Healy MD; Collins BM
    Traffic; 2019 Jul; 20(7):465-478. PubMed ID: 30993794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive androstane receptor activation decreases plasma apolipoprotein B-containing lipoproteins and atherosclerosis in low-density lipoprotein receptor-deficient mice.
    Sberna AL; Assem M; Xiao R; Ayers S; Gautier T; Guiu B; Deckert V; Chevriaux A; Grober J; Le Guern N; Pais de Barros JP; Moore DD; Lagrost L; Masson D
    Arterioscler Thromb Vasc Biol; 2011 Oct; 31(10):2232-9. PubMed ID: 21778422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ablation of Plasma Prekallikrein Decreases Low-Density Lipoprotein Cholesterol by Stabilizing Low-Density Lipoprotein Receptor and Protects Against Atherosclerosis.
    Wang JK; Li Y; Zhao XL; Liu YB; Tan J; Xing YY; Adi D; Wang YT; Fu ZY; Ma YT; Liu SM; Liu Y; Wang Y; Shi XJ; Lu XY; Song BL; Luo J
    Circulation; 2022 Mar; 145(9):675-687. PubMed ID: 35189703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator.
    Jiang H; Zhang J; Du Y; Jia X; Yang F; Si S; Wang L; Hong B
    Atherosclerosis; 2015 Dec; 243(2):523-32. PubMed ID: 26523989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bempedoic Acid Lowers Low-Density Lipoprotein Cholesterol and Attenuates Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient (
    Burke AC; Telford DE; Sutherland BG; Edwards JY; Sawyez CG; Barrett PHR; Newton RS; Pickering JG; Huff MW
    Arterioscler Thromb Vasc Biol; 2018 May; 38(5):1178-1190. PubMed ID: 29449335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis.
    Alvarez ML; Khosroheidari M; Eddy E; Done SC
    Atherosclerosis; 2015 Oct; 242(2):595-604. PubMed ID: 26318398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1.
    van de Sluis B; Wijers M; Herz J
    Curr Opin Lipidol; 2017 Jun; 28(3):241-247. PubMed ID: 28301372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taking One Step Back in Familial Hypercholesterolemia:
    Loaiza N; Hartgers ML; Reeskamp LF; Balder JW; Rimbert A; Bazioti V; Wolters JC; Winkelmeijer M; Jansen HPG; Dallinga-Thie GM; Volta A; Huijkman N; Smit M; Kloosterhuis N; Koster M; Svendsen AF; van de Sluis B; Hovingh GK; Grefhorst A; Kuivenhoven JA
    Arterioscler Thromb Vasc Biol; 2020 Apr; 40(4):973-985. PubMed ID: 31996024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol-(4,5)-Bisphosphate Regulates Plasma Cholesterol Through LDL (Low-Density Lipoprotein) Receptor Lysosomal Degradation.
    Qin Y; Ting F; Kim MJ; Strelnikov J; Harmon J; Gao F; Dose A; Teng BB; Alipour MA; Yao Z; Crooke R; Krauss RM; Medina MW
    Arterioscler Thromb Vasc Biol; 2020 May; 40(5):1311-1324. PubMed ID: 32188273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human PCSK9 promotes hepatic lipogenesis and atherosclerosis development via apoE- and LDLR-mediated mechanisms.
    Tavori H; Giunzioni I; Predazzi IM; Plubell D; Shivinsky A; Miles J; Devay RM; Liang H; Rashid S; Linton MF; Fazio S
    Cardiovasc Res; 2016 May; 110(2):268-78. PubMed ID: 26980204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.