BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 29545468)

  • 41. [A SCAR marker for resistance to Aspergillus flavus in peanut (Arachis hypogaea L.)].
    Lei Y; Liao BS; Wang SY; Zhang YB; Li D; Jiang HF
    Yi Chuan; 2006 Sep; 28(9):1107-11. PubMed ID: 16963420
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptome identification of the resistance-associated genes (RAGs) to Aspergillus flavus infection in pre-harvested peanut (Arachis hypogaea).
    Wang T; Chen XP; Li HF; Liu HY; Hong YB; Yang QL; Chi XY; Yang Z; Yu SL; Li L; Liang XQ
    Funct Plant Biol; 2013 Apr; 40(3):292-303. PubMed ID: 32481108
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum.
    Chen Y; Ren X; Zhou X; Huang L; Yan L; Lei Y; Liao B; Huang J; Huang S; Wei W; Jiang H
    BMC Genomics; 2014 Dec; 15(1):1078. PubMed ID: 25481772
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcriptional profiles uncover Aspergillus flavus-induced resistance in maize kernels.
    Luo M; Brown RL; Chen ZY; Menkir A; Yu J; Bhatnagar D
    Toxins (Basel); 2011 Jul; 3(7):766-86. PubMed ID: 22069739
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RNA-Seq-based transcriptome analysis of aflatoxigenic Aspergillus flavus in response to water activity.
    Zhang F; Guo Z; Zhong H; Wang S; Yang W; Liu Y; Wang S
    Toxins (Basel); 2014 Nov; 6(11):3187-207. PubMed ID: 25421810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteomic analysis reveals an aflatoxin-triggered immune response in cotyledons of Arachis hypogaea infected with Aspergillus flavus.
    Wang Z; Yan S; Liu C; Chen F; Wang T
    J Proteome Res; 2012 May; 11(5):2739-53. PubMed ID: 22424419
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential regulation of mycelial growth and aflatoxin biosynthesis by Aspergillus flavus under different temperatures as revealed by strand-specific RNA-Seq.
    Han G; Zhao K; Yan X; Xiang F; Li X; Tao F
    Microbiologyopen; 2019 Oct; 8(10):e897. PubMed ID: 31328901
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aspergillus section Flavi community structure in Zambia influences aflatoxin contamination of maize and groundnut.
    Kachapulula PW; Akello J; Bandyopadhyay R; Cotty PJ
    Int J Food Microbiol; 2017 Nov; 261():49-56. PubMed ID: 28915412
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species.
    Yan S; Liang Y; Zhang J; Chen Z; Liu CM
    Fungal Genet Biol; 2015 Aug; 81():229-37. PubMed ID: 25498164
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aspergillus flavus expressed sequence tags for identification of genes with putative roles in aflatoxin contamination of crops.
    Yu J; Whitelaw CA; Nierman WC; Bhatnagar D; Cleveland TE
    FEMS Microbiol Lett; 2004 Aug; 237(2):333-40. PubMed ID: 15321681
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of nitrogen metabolism on growth and aflatoxin biosynthesis in Aspergillus flavus.
    Wang B; Han X; Bai Y; Lin Z; Qiu M; Nie X; Wang S; Zhang F; Zhuang Z; Yuan J; Wang S
    J Hazard Mater; 2017 Feb; 324(Pt B):691-700. PubMed ID: 27899241
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of Aspergilli from dried red chilies (Capsicum spp.): Insights into the etiology of aflatoxin contamination.
    Singh P; Cotty PJ
    Int J Food Microbiol; 2019 Jan; 289():145-153. PubMed ID: 30243147
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonaflatoxigenic Aspergillus flavus TX9-8 competitively prevents aflatoxin accumulation by A. flavus isolates of large and small sclerotial morphotypes.
    Chang PK; Hua SS
    Int J Food Microbiol; 2007 Mar; 114(3):275-9. PubMed ID: 17140692
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biological control of aflatoxin contamination of crops.
    Yin YN; Yan LY; Jiang JH; Ma ZH
    J Zhejiang Univ Sci B; 2008 Oct; 9(10):787-92. PubMed ID: 18837105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrative analyses reveal transcriptome-proteome correlation in biological pathways and secondary metabolism clusters in A. flavus in response to temperature.
    Bai Y; Wang S; Zhong H; Yang Q; Zhang F; Zhuang Z; Yuan J; Nie X; Wang S
    Sci Rep; 2015 Sep; 5():14582. PubMed ID: 26416011
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aflatoxin production in peanut lines selected to represent a range of linoleic acid concentrations.
    Xue HQ; Isleib TG; Payne GA; Novitzky WF; OBrian G
    J Food Prot; 2005 Jan; 68(1):126-32. PubMed ID: 15690813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against Aspergillus flavus infection.
    Sharma S; Choudhary B; Yadav S; Mishra A; Mishra VK; Chand R; Chen C; Pandey SP
    J Hazard Mater; 2021 Feb; 404(Pt A):124155. PubMed ID: 33049626
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aflatoxin in maize: a review of the early literature from "moldy-corn toxicosis" to the genetics of aflatoxin accumulation resistance.
    Spencer Smith J; Paul Williams W; Windham GL
    Mycotoxin Res; 2019 May; 35(2):111-128. PubMed ID: 30729404
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Root vs pod infection by root-knot nematodes on aflatoxin contamination of peanut.
    Timper P; Holbrook C; Wilson D
    Commun Agric Appl Biol Sci; 2007; 72(3):655-8. PubMed ID: 18399500
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relationship between Meloidogyne arenaria and Aflatoxin Contamination in Peanut.
    Timper P; Wilson DM; Holbrook CC; Maw BW
    J Nematol; 2004 Jun; 36(2):167-70. PubMed ID: 19262803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.