These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 29545845)
1. Comprehensive analysis of differential expression profiles reveals potential biomarkers associated with the cell cycle and regulated by p53 in human small cell lung cancer. Ni Z; Wang X; Zhang T; Li L; Li J Exp Ther Med; 2018 Apr; 15(4):3273-3282. PubMed ID: 29545845 [TBL] [Abstract][Full Text] [Related]
2. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250 [TBL] [Abstract][Full Text] [Related]
3. Identification of candidate genes associated with the pathogenesis of small cell lung cancer via integrated bioinformatics analysis. Liao Y; Yin G; Wang X; Zhong P; Fan X; Huang C Oncol Lett; 2019 Oct; 18(4):3723-3733. PubMed ID: 31516585 [TBL] [Abstract][Full Text] [Related]
4. Identification and Integrated Analysis of Key Biomarkers for Diagnosis and Prognosis of Non-Small Cell Lung Cancer. Liu X; Liu X; Li J; Ren F Med Sci Monit; 2019 Dec; 25():9280-9289. PubMed ID: 31805030 [TBL] [Abstract][Full Text] [Related]
5. Identification of potential therapeutic targets for colorectal cancer by bioinformatics analysis. Yan M; Song M; Bai R; Cheng S; Yan W Oncol Lett; 2016 Dec; 12(6):5092-5098. PubMed ID: 28105216 [TBL] [Abstract][Full Text] [Related]
6. Screening Hub Genes as Prognostic Biomarkers of Hepatocellular Carcinoma by Bioinformatics Analysis. Zhou Z; Li Y; Hao H; Wang Y; Zhou Z; Wang Z; Chu X Cell Transplant; 2019 Dec; 28(1_suppl):76S-86S. PubMed ID: 31822116 [TBL] [Abstract][Full Text] [Related]
7. CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 May Be Potential Therapeutic Targets for Hepatocellular Carcinoma Using Integrated Bioinformatic Analysis. Yang WX; Pan YY; You CG Biomed Res Int; 2019; 2019():1245072. PubMed ID: 31737652 [TBL] [Abstract][Full Text] [Related]
8. CDK1 and CCNB1 as potential diagnostic markers of rhabdomyosarcoma: validation following bioinformatics analysis. Li Q; Zhang L; Jiang J; Zhang Y; Wang X; Zhang Q; Wang Y; Liu C; Li F BMC Med Genomics; 2019 Dec; 12(1):198. PubMed ID: 31870357 [TBL] [Abstract][Full Text] [Related]
9. Examining the biomarkers and molecular mechanisms of medulloblastoma based on bioinformatics analysis. Yang B; Dai JX; Pan YB; Ma YB; Chu SH Oncol Lett; 2019 Jul; 18(1):433-441. PubMed ID: 31289514 [TBL] [Abstract][Full Text] [Related]
10. Network analysis of differentially expressed genes reveals key genes in small cell lung cancer. Tantai JC; Pan XF; Zhao H Eur Rev Med Pharmacol Sci; 2015 Apr; 19(8):1364-72. PubMed ID: 25967710 [TBL] [Abstract][Full Text] [Related]
11. Identification of key genes associated with bladder cancer using gene expression profiles. Han Y; Jin X; Zhou H; Liu B Oncol Lett; 2018 Jan; 15(1):297-303. PubMed ID: 29375713 [TBL] [Abstract][Full Text] [Related]
12. Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA‑gene pairs in small‑cell lung cancer. Mao Y; Xue P; Li L; Xu P; Cai Y; Chu X; Jiang P; Zhu S Mol Med Rep; 2019 Sep; 20(3):2199-2208. PubMed ID: 31257520 [TBL] [Abstract][Full Text] [Related]
13. Bioinformatics identification of crucial genes and pathways associated with hepatocellular carcinoma. Gao X; Wang X; Zhang S Biosci Rep; 2018 Dec; 38(6):. PubMed ID: 30341252 [TBL] [Abstract][Full Text] [Related]
14. Aberrant expression of cell cycle and material metabolism related genes contributes to hepatocellular carcinoma occurrence. Yan H; Li Z; Shen Q; Wang Q; Tian J; Jiang Q; Gao L Pathol Res Pract; 2017 Apr; 213(4):316-321. PubMed ID: 28238542 [TBL] [Abstract][Full Text] [Related]
15. Identification of Potential Crucial Genes and Key Pathways in Breast Cancer Using Bioinformatic Analysis. Deng JL; Xu YH; Wang G Front Genet; 2019; 10():695. PubMed ID: 31428132 [No Abstract] [Full Text] [Related]
16. Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gastric cancer. Wu Q; Zhang B; Wang Z; Hu X; Sun Y; Xu R; Chen X; Wang Q; Ju F; Ren S; Zhang C; Qi F; Ma Q; Xue Q; Zhou YL Pathol Res Pract; 2019 May; 215(5):1038-1048. PubMed ID: 30975489 [TBL] [Abstract][Full Text] [Related]
17. Effects of β-catenin on differentially expressed genes in multiple myeloma. Chen H; Chai W; Li B; Ni M; Zhang GQ; Liu HW; Zhang Z; Chen JY; Zhou YG; Wang Y J Huazhong Univ Sci Technolog Med Sci; 2015 Aug; 35(4):546-552. PubMed ID: 26223925 [TBL] [Abstract][Full Text] [Related]
18. Identification of potential target genes and crucial pathways in small cell lung cancer based on bioinformatic strategy and human samples. Chen X; Wang L; Su X; Luo SY; Tang X; Huang Y PLoS One; 2020; 15(11):e0242194. PubMed ID: 33186389 [TBL] [Abstract][Full Text] [Related]
19. Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis. Yu C; Chen F; Jiang J; Zhang H; Zhou M Mol Med Rep; 2019 Aug; 20(2):1259-1269. PubMed ID: 31173250 [TBL] [Abstract][Full Text] [Related]
20. Screening and identification of key biomarkers in lung squamous cell carcinoma by bioinformatics analysis. Man J; Zhang X; Dong H; Li S; Yu X; Meng L; Gu X; Yan H; Cui J; Lai Y Oncol Lett; 2019 Nov; 18(5):5185-5196. PubMed ID: 31612029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]