These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814 [TBL] [Abstract][Full Text] [Related]
4. The possible occurrence of zinc in ribitol and sorbitol dehydrogenases from Mycobacterium sp. 279. Szumiło T; Byra A Acta Biochim Pol; 1984; 31(4):401-8. PubMed ID: 6534040 [TBL] [Abstract][Full Text] [Related]
5. Separation and properties of polyhydric alcohol dehydrogenases from Mycobacterium sp. 279 and Mycobacterium phlei. Szumiło T; Szymona O; Szymona M Acta Microbiol Pol; 1980; 29(3):233-47. PubMed ID: 19852109 [TBL] [Abstract][Full Text] [Related]
6. [Enzymes catalyzing the reduction of aldopentoses and the oxidation of pentitols in Mycobacteria]. Andrejew A C R Seances Acad Sci D; 1979 Dec; 289(16):1241-4. PubMed ID: 120778 [TBL] [Abstract][Full Text] [Related]
7. Pentitol metabolism of Rhodobacter sphaeroides Si4: purification and characterization of a ribitol dehydrogenase. Kahle C; Schneider KH; Giffhorn F J Gen Microbiol; 1992 Jun; 138(6):1277-81. PubMed ID: 1527498 [TBL] [Abstract][Full Text] [Related]
8. [Dehydrogenases reducing NAD+ in the presence of D (-) 3- phosphoglycerate in mycobacteria (BCG, H37Ra, M. phlei)]. Andrejew A Biochimie; 1979; 61(4):573-5. PubMed ID: 385063 [TBL] [Abstract][Full Text] [Related]
9. Purification and properties of the xylitol dehydrogenase from Pullularia pullulans. Sugai JK; Veiga LA An Acad Bras Cienc; 1981 Mar; 53(1):183-93. PubMed ID: 7197134 [TBL] [Abstract][Full Text] [Related]
10. Gluconobacter oxydans NAD-dependent, D-fructose reducing, polyol dehydrogenases activity: screening, medium optimisation and application for enzymatic polyol production. Parmentier S; Beauprez J; Arnaut F; Soetaert W; Vandamme EJ Biotechnol Lett; 2005 Mar; 27(5):305-11. PubMed ID: 15834790 [TBL] [Abstract][Full Text] [Related]
11. [Asparagine metabolism in mycobacteria. II. -- Asparagine hydrolysis and aspartohydroxamic acid formation and hydrolysis catalysed by M. fortuitum, M. phlei and BCG asparaginases (author's transl)]. Andrejew A; Orfanelli MT; Desbordes J Ann Microbiol (Paris); 1975; 126(2):151-60. PubMed ID: 239619 [TBL] [Abstract][Full Text] [Related]
12. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration. Parmentier S; Arnaut F; Soetaert W; Vandamme EJ Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):255-62. PubMed ID: 15296174 [TBL] [Abstract][Full Text] [Related]
13. Purification and properties of beta-hydroxybutyrate dehydrogenase from Mycobacterium phlei ATCC354. Dhariwal KR; Venkitasubramanian TA J Gen Microbiol; 1978 Jan; 104(1):123-6. PubMed ID: 24083 [TBL] [Abstract][Full Text] [Related]
19. [Kinetic properties of sorbitol dehydrogenase from calf liver cell cytoplasm]. Sudovtsov VE; Zharmukhamedova TIu Biokhimiia; 1990 Apr; 55(4):680-6. PubMed ID: 2378913 [TBL] [Abstract][Full Text] [Related]
20. Chirality of the hydrogen transfer to the coenzyme catalyzed by ribitol dehydrogenase from Klebsiella pneumoniae and D-mannitol 1-phosphate dehydrogenase from Escherichia coli. Alizade MA; Gaede K; Brendel K Hoppe Seylers Z Physiol Chem; 1976 Aug; 357(8):1163-9. PubMed ID: 185137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]