These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29546260)

  • 61. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance.
    Shin HS; Jung KN; Jo YN; Park MS; Kim H; Lee JW
    Sci Rep; 2016 May; 6():26195. PubMed ID: 27189834
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries.
    Zhang J; Yin YX; Guo YG
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27838-44. PubMed ID: 26618232
    [TBL] [Abstract][Full Text] [Related]  

  • 63. SnS
    Wang S; Liu S; Li X; Li C; Zang R; Man Z; Wu Y; Li P; Wang G
    Chemistry; 2018 Mar; 24(15):3873-3881. PubMed ID: 29319903
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Waste tire derived carbon as potential anode for lithium-ion batteries.
    Veldevi T; Raghu S; Kalaivani RA; Shanmugharaj AM
    Chemosphere; 2022 Feb; 288(Pt 1):132438. PubMed ID: 34619259
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Double-Helix Structure in Carrageenan-Metal Hydrogels: A General Approach to Porous Metal Sulfides/Carbon Aerogels with Excellent Sodium-Ion Storage.
    Li D; Yang D; Yang X; Wang Y; Guo Z; Xia Y; Sun S; Guo S
    Angew Chem Int Ed Engl; 2016 Dec; 55(51):15925-15928. PubMed ID: 27879049
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Crab Shell-Derived SnS
    Chen Y; Zhao Y; Liu H; Ma T
    ACS Omega; 2023 Mar; 8(10):9145-9153. PubMed ID: 36936300
    [TBL] [Abstract][Full Text] [Related]  

  • 67. FeP/C Composites as an Anode Material for K-Ion Batteries.
    Li W; Yan B; Fan H; Zhang C; Xu H; Cheng X; Li Z; Jia G; An S; Qiu X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22364-22370. PubMed ID: 31187615
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rodlike Sb
    Ge P; Cao X; Hou H; Li S; Ji X
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34979-34989. PubMed ID: 28937206
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fe nanopowder-assisted fabrication of FeO
    Wang T; Liu W; Gao X; Zhang Y; Du Y; Feng W; Fan H
    Nanoscale; 2021 Jan; 13(4):2481-2491. PubMed ID: 33471015
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metal-organic framework derived small sized metal sulfide nanoparticles anchored on N-doped carbon plates for high-capacity energy storage.
    Zhai ZB; Huang KJ; Wu X; Hu H; Xu Y; Chai RM
    Dalton Trans; 2019 Apr; 48(14):4712-4718. PubMed ID: 30896719
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhanced Rate Capability of Polymer-Derived SiCN Anode Material for Electrochemical Storage of Lithium with 3-D Carbon Nanotube Network Dispersed in Nanoscale.
    Zhang J; Xu C; Liu Z; Wang W; Xin X; Shen L; Zhou X; Zhou J; Huang Q
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3067-75. PubMed ID: 26353537
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bio-Waste-Derived Hard Carbon Anodes Through a Sustainable and Cost-Effective Synthesis Process for Sodium-Ion Batteries.
    Moon H; Innocenti A; Liu H; Zhang H; Weil M; Zarrabeitia M; Passerini S
    ChemSusChem; 2023 Jan; 16(1):e202201713. PubMed ID: 36245279
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Facile Strategy to Low-Cost Synthesis of Hierarchically Porous, Active Carbon of High Graphitization for Energy Storage.
    Deng X; Shi W; Zhong Y; Zhou W; Liu M; Shao Z
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21573-21581. PubMed ID: 29863830
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Understanding the Size-Dependent Sodium Storage Properties of Na2C6O6-Based Organic Electrodes for Sodium-Ion Batteries.
    Wang Y; Ding Y; Pan L; Shi Y; Yue Z; Shi Y; Yu G
    Nano Lett; 2016 May; 16(5):3329-34. PubMed ID: 27078609
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage.
    Liu WJ; Tian K; He YR; Jiang H; Yu HQ
    Environ Sci Technol; 2014 Dec; 48(23):13951-9. PubMed ID: 25372400
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors.
    Zhu J; Roscow J; Chandrasekaran S; Deng L; Zhang P; He T; Wang K; Huang L
    ChemSusChem; 2020 Mar; 13(6):1275-1295. PubMed ID: 32061148
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tailored polyimide as positive electrode and polyimide-derived carbon as negative electrode for sodium ion full batteries.
    Wang C; Chu R; Guan Z; Ullah Z; Song H; Zhang Y; Yu C; Zhao L; Li Q; Liu L
    Nanoscale; 2020 Feb; 12(7):4729-4735. PubMed ID: 32049081
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Viable Fabrication of Gas Separation Membrane Used by Reclaimed Rubber from Waste Tires.
    Lin YT; Zhuang GL; Wey MY; Tseng HH
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33143042
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Construction of Large Non-Localized π-Electron System for Enhanced Sodium-Ion Storage.
    Wang LY; Ma C; Hou CC; Wei X; Wang KX; Chen JS
    Small; 2022 Feb; 18(8):e2105825. PubMed ID: 34889023
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Upgrading pyrolytic residue from waste tires to commercial carbon black.
    Zhang X; Li H; Cao Q; Jin L; Wang F
    Waste Manag Res; 2018 May; 36(5):436-444. PubMed ID: 29589516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.