These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 29546654)
61. Role of AMP-activated protein kinase activators in antiproliferative multi-drug pituitary tumour therapies: effects of combined treatments with compounds affecting the mTOR-p70S6 kinase axis in cultured pituitary tumour cells. Tulipano G; Faggi L; Cacciamali A; Spinello M; Cocchi D; Giustina A J Neuroendocrinol; 2015 Jan; 27(1):20-32. PubMed ID: 25323047 [TBL] [Abstract][Full Text] [Related]
62. Prior serum- and AICAR-induced AMPK activation in primary human myocytes does not lead to subsequent increase in insulin-stimulated glucose uptake. Al-Khalili L; Krook A; Zierath JR; Cartee GD Am J Physiol Endocrinol Metab; 2004 Sep; 287(3):E553-7. PubMed ID: 15149951 [TBL] [Abstract][Full Text] [Related]
63. AICAR (5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside) increases the production of toxic molecules and affects the profile of cytokines release in LPS-stimulated rat primary microglial cultures. Łabuzek K; Liber S; Gabryel B; Okopień B Neurotoxicology; 2010 Jan; 31(1):134-46. PubMed ID: 19853624 [TBL] [Abstract][Full Text] [Related]
64. Activation of adenosine monophosphate activated protein kinase inhibits growth of multiple myeloma cells. Baumann P; Mandl-Weber S; Emmerich B; Straka C; Schmidmaier R Exp Cell Res; 2007 Oct; 313(16):3592-603. PubMed ID: 17669398 [TBL] [Abstract][Full Text] [Related]
66. Aneuploid human colonic epithelial cells are sensitive to AICAR-induced growth inhibition through EGFR degradation. Ly P; Kim SB; Kaisani AA; Marian G; Wright WE; Shay JW Oncogene; 2013 Jun; 32(26):3139-46. PubMed ID: 22890317 [TBL] [Abstract][Full Text] [Related]
67. AICAR, an activator of AMP-activated protein kinase, down-regulates the insulin receptor expression in HepG2 cells. Nakamaru K; Matsumoto K; Taguchi T; Suefuji M; Murata Y; Igata M; Kawashima J; Kondo T; Motoshima H; Tsuruzoe K; Miyamura N; Toyonaga T; Araki E Biochem Biophys Res Commun; 2005 Mar; 328(2):449-54. PubMed ID: 15694368 [TBL] [Abstract][Full Text] [Related]
68. AICAR induces AMPK-independent programmed necrosis in prostate cancer cells. Guo F; Liu SQ; Gao XH; Zhang LY Biochem Biophys Res Commun; 2016 May; 474(2):277-283. PubMed ID: 27103440 [TBL] [Abstract][Full Text] [Related]
69. The paramount role of cytokines and chemokines in papillary thyroid cancer: a review and experimental results. Fallahi P; Ferrari SM; Piaggi S; Luconi M; Cantini G; Gelmini S; Elia G; Ruffilli I; Antonelli A Immunol Res; 2018 Dec; 66(6):710-722. PubMed ID: 30617967 [TBL] [Abstract][Full Text] [Related]
70. SIRT4 inhibits the proliferation, migration, and invasion abilities of thyroid cancer cells by inhibiting glutamine metabolism. Chen Z; Lin J; Feng S; Chen X; Huang H; Wang C; Yu Y; He Y; Han S; Zheng L; Huang G Onco Targets Ther; 2019; 12():2397-2408. PubMed ID: 30992675 [TBL] [Abstract][Full Text] [Related]
71. In vitro antitumoral effects of the steroid ouabain on human thyroid papillary carcinoma cell lines. Teixeira MP; Passos EF; Haddad NF; Andrade MN; Rumjanek VM; Miranda-Alves L; de Carvalho DP; de Paiva LS Environ Toxicol; 2021 Jul; 36(7):1338-1348. PubMed ID: 33760381 [TBL] [Abstract][Full Text] [Related]
72. Emodin inhibits the proliferation of papillary thyroid carcinoma by activating AMPK. Li W; Wang D; Li M; Li B Exp Ther Med; 2021 Oct; 22(4):1075. PubMed ID: 34447468 [TBL] [Abstract][Full Text] [Related]
73. Differential modulation by vanadium pentoxide of the secretion of CXCL8 and CXCL11 chemokines in thyroid cells. Fallahi P; Foddis R; Elia G; Ragusa F; Patrizio A; Frenzilli G; Benvenga S; Cristaudo A; Antonelli A; Ferrari SM Mol Med Rep; 2018 May; 17(5):7415-7420. PubMed ID: 29568907 [TBL] [Abstract][Full Text] [Related]
74. Identification of aneuploidy-selective antiproliferation compounds. Tang YC; Williams BR; Siegel JJ; Amon A Cell; 2011 Feb; 144(4):499-512. PubMed ID: 21315436 [TBL] [Abstract][Full Text] [Related]
75. IGSF1: A novel oncogene regulates the thyroid cancer progression. Guan Y; Wang Y; Bhandari A; Xia E; Wang O Cell Biochem Funct; 2019 Oct; 37(7):516-524. PubMed ID: 31343762 [TBL] [Abstract][Full Text] [Related]
76. Inflammatory tumor microenvironment of thyroid cancer promotes cellular dedifferentiation and silencing of iodide-handling genes expression. Zhang L; Xu S; Cheng X; Wu J; Wang Y; Gao W; Bao J; Yu H Pathol Res Pract; 2023 Jun; 246():154495. PubMed ID: 37172523 [TBL] [Abstract][Full Text] [Related]
77. Potential Antitumor Effect of Harmine in the Treatment of Thyroid Cancer. Ruan S; Jia F; Li J Evid Based Complement Alternat Med; 2017; 2017():9402615. PubMed ID: 28270853 [TBL] [Abstract][Full Text] [Related]
78. Comparison of a novel CXCL12/CCL5 dependent migration assay with CXCL8 secretion and CD86 expression for distinguishing sensitizers from non-sensitizers using MUTZ-3 Langerhans cells. Ouwehand K; Spiekstra SW; Reinders J; Scheper RJ; de Gruijl TD; Gibbs S Toxicol In Vitro; 2010 Mar; 24(2):578-85. PubMed ID: 19878716 [TBL] [Abstract][Full Text] [Related]
79. The Chemokine CXCL8 in Carcinogenesis and Drug Response. Gales D; Clark C; Manne U; Samuel T ISRN Oncol; 2013 Oct; 2013():859154. PubMed ID: 24224100 [TBL] [Abstract][Full Text] [Related]
80. Acute exposure to diesel particulate matter promotes collective cell migration in thyroid cancer cells. Cheng SY; Huang SY; Cheng SP Front Toxicol; 2023; 5():1294760. PubMed ID: 38098751 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]