These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 29546893)
1. Coalescence driven self-organization of growing nanodroplets around a microcap. Dyett B; Hao H; Lohse D; Zhang X Soft Matter; 2018 Apr; 14(14):2628-2637. PubMed ID: 29546893 [TBL] [Abstract][Full Text] [Related]
2. Growth dynamics of surface nanodroplets during solvent exchange at varying flow rates. Dyett B; Kiyama A; Rump M; Tagawa Y; Lohse D; Zhang X Soft Matter; 2018 Jun; 14(25):5197-5204. PubMed ID: 29780988 [TBL] [Abstract][Full Text] [Related]
3. Spontaneous Pattern Formation of Surface Nanodroplets from Competitive Growth. Peng S; Lohse D; Zhang X ACS Nano; 2015 Dec; 9(12):11916-23. PubMed ID: 26502340 [TBL] [Abstract][Full Text] [Related]
4. Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets. Xie FF; Lu G; Wang XD; Wang BB Langmuir; 2018 Feb; 34(8):2734-2740. PubMed ID: 29384379 [TBL] [Abstract][Full Text] [Related]
5. How a Surface Nanodroplet Sits on the Rim of a Microcap. Peng S; Dević I; Tan H; Lohse D; Zhang X Langmuir; 2016 Jun; 32(23):5744-54. PubMed ID: 27183892 [TBL] [Abstract][Full Text] [Related]
6. Numerical Simulation of Coalescence-Induced Jumping of Multidroplets on Superhydrophobic Surfaces: Initial Droplet Arrangement Effect. Wang K; Liang Q; Jiang R; Zheng Y; Lan Z; Ma X Langmuir; 2017 Jun; 33(25):6258-6268. PubMed ID: 28562053 [TBL] [Abstract][Full Text] [Related]
7. Coalescence of repelling colloidal droplets: a route to monodisperse populations. Roger K; Botet R; Cabane B Langmuir; 2013 May; 29(19):5689-700. PubMed ID: 23570451 [TBL] [Abstract][Full Text] [Related]
13. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces. Aili A; Li H; Alhosani MH; Zhang T ACS Appl Mater Interfaces; 2016 Aug; 8(33):21776-86. PubMed ID: 27486890 [TBL] [Abstract][Full Text] [Related]
14. Droplet formation and growth inside a polymer network: A molecular dynamics simulation study. Jung J; Jang E; Shoaib MA; Jo K; Kim JS J Chem Phys; 2016 Apr; 144(13):134502. PubMed ID: 27059575 [TBL] [Abstract][Full Text] [Related]
15. Collective interactions in the nucleation and growth of surface droplets. Xu C; Yu H; Peng S; Lu Z; Lei L; Lohse D; Zhang X Soft Matter; 2017 Feb; 13(5):937-944. PubMed ID: 28009910 [TBL] [Abstract][Full Text] [Related]
16. In Situ Atomic-Scale Observation of Droplet Coalescence Driven Nucleation and Growth at Liquid/Solid Interfaces. Li J; Wang Z; Deepak FL ACS Nano; 2017 Jun; 11(6):5590-5597. PubMed ID: 28538094 [TBL] [Abstract][Full Text] [Related]
17. Trapping and Coalescence of Diamagnetic Aqueous Droplets Using Negative Magnetophoresis. Jain SK; Banerjee U; Sen AK Langmuir; 2020 Jun; 36(21):5960-5966. PubMed ID: 32388985 [TBL] [Abstract][Full Text] [Related]
18. Electrohydrodynamic coalescence of droplets using an embedded potential flow model. Garzon M; Gray LJ; Sethian JA Phys Rev E; 2018 Mar; 97(3-1):033112. PubMed ID: 29776168 [TBL] [Abstract][Full Text] [Related]
19. Growth of nanodroplets on a still microfiber under flow conditions. Yu H; Rump M; Maheshwari S; Bao L; Zhang X Phys Chem Chem Phys; 2018 Jul; 20(27):18252-18261. PubMed ID: 29947379 [TBL] [Abstract][Full Text] [Related]
20. Simulations of droplet coalescence in simple shear flow. Shardt O; Derksen JJ; Mitra SK Langmuir; 2013 May; 29(21):6201-12. PubMed ID: 23642079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]