These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29547135)

  • 1. Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching.
    Chan LW; Morse DE; Gordon MJ
    Bioinspir Biomim; 2018 May; 13(4):041001. PubMed ID: 29547135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.
    Song YM; Jeong Y; Yeo CI; Lee YT
    Opt Express; 2012 Nov; 20(23):A916-23. PubMed ID: 23326839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic.
    Sun J; Wang X; Wu J; Jiang C; Shen J; Cooper MA; Zheng X; Liu Y; Yang Z; Wu D
    Sci Rep; 2018 Apr; 8(1):5438. PubMed ID: 29615712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection.
    Zhang C; Yi P; Peng L; Ni J
    Appl Opt; 2017 Apr; 56(10):2901-2907. PubMed ID: 28375259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle.
    Chuang SY; Chen HL; Shieh J; Lin CH; Cheng CC; Liu HW; Yu CC
    Nanoscale; 2010 May; 2(5):799-805. PubMed ID: 20648327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailored antireflective biomimetic nanostructures for UV applications.
    Morhard C; Pacholski C; Lehr D; Brunner R; Helgert M; Sundermann M; Spatz JP
    Nanotechnology; 2010 Oct; 21(42):425301. PubMed ID: 20858934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic compound eye with a high numerical aperture and anti-reflective nanostructures on curved surfaces.
    Wang T; Yu W; Li C; Zhang H; Xu Z; Lu Z; Sun Q
    Opt Lett; 2012 Jun; 37(12):2397-9. PubMed ID: 22739920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.
    Huang YF; Chattopadhyay S; Jen YJ; Peng CY; Liu TA; Hsu YK; Pan CL; Lo HC; Hsu CH; Chang YH; Lee CS; Chen KH; Chen LC
    Nat Nanotechnol; 2007 Dec; 2(12):770-4. PubMed ID: 18654429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic subwavelength antireflective gratings on GaAs.
    Sun CH; Ho BJ; Jiang B; Jiang P
    Opt Lett; 2008 Oct; 33(19):2224-6. PubMed ID: 18830359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and simulation studies of anti-reflection sub-micron conical structures on a GaAs substrate.
    Lee YC; Chang CC; Chou YY
    Opt Express; 2013 Jan; 21 Suppl 1():A36-41. PubMed ID: 23389273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antireflective nanocoatings for UV-sensation: the case of predatory owlfly insects.
    Kryuchkov M; Lehmann J; Schaab J; Fiebig M; Katanaev VL
    J Nanobiotechnology; 2017 Jul; 15(1):52. PubMed ID: 28705169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antireflective "moth-eye" structures on tunable optical silicone membranes.
    Brunner R; Keil B; Morhard C; Lehr D; Draheim J; Wallrabe U; Spatz J
    Appl Opt; 2012 Jul; 51(19):4370-6. PubMed ID: 22772109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic antireflective hierarchical arrays.
    Xu H; Lu N; Shi G; Qi D; Yang B; Li H; Xu W; Chi L
    Langmuir; 2011 Apr; 27(8):4963-7. PubMed ID: 21438564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of diffuse scattering phenomena in moth-eye arrays for broadband infrared applications.
    Gonzalez FL; Morse DE; Gordon MJ
    Opt Lett; 2014 Jan; 39(1):13-6. PubMed ID: 24365809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moth-Eye-Inspired Biophotonic Surfaces with Antireflective and Hydrophobic Characteristics.
    Kuo WK; Hsu JJ; Nien CK; Yu HH
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):32021-32030. PubMed ID: 27787981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration.
    Song YM; Park GC; Jang SJ; Ha JH; Yu JS; Lee YT
    Opt Express; 2011 Mar; 19 Suppl 2():A157-65. PubMed ID: 21445217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized moth-eye anti-reflective structures for As
    Weiblen RJ; Menyuk CR; Busse LE; Shaw LB; Sanghera JS; Aggarwal ID
    Opt Express; 2016 May; 24(10):10172-87. PubMed ID: 27409844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative moth-eye nanostructures: antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors.
    Kryuchkov M; Lehmann J; Schaab J; Cherepanov V; Blagodatski A; Fiebig M; Katanaev VL
    J Nanobiotechnology; 2017 Sep; 15(1):61. PubMed ID: 28877691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant light extraction enhancement of medical imaging scintillation materials using biologically inspired integrated nanostructures.
    Pignalosa P; Liu B; Chen H; Smith H; Yi Y
    Opt Lett; 2012 Jul; 37(14):2808-10. PubMed ID: 22825141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.