These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29547326)

  • 1. Coherent Microwave-to-Optical Conversion via Six-Wave Mixing in Rydberg Atoms.
    Han J; Vogt T; Gross C; Jaksch D; Kiffner M; Li W
    Phys Rev Lett; 2018 Mar; 120(9):093201. PubMed ID: 29547326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent microwave-to-optical conversion by three-wave mixing in a room temperature atomic system.
    Adwaith KV; Karigowda A; Manwatkar C; Bretenaker F; Narayanan A
    Opt Lett; 2019 Jan; 44(1):33-36. PubMed ID: 30645538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic observation of resonant electric dipole-dipole interactions between cold Rydberg atoms.
    Afrousheh K; Bohlouli-Zanjani P; Vagale D; Mugford A; Fedorov M; Martin JD
    Phys Rev Lett; 2004 Dec; 93(23):233001. PubMed ID: 15601153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of single stored-photon with microwave field based on Rydberg polariton.
    Fan J; Zhang H; Jiao Y; Li C; Bai J; Wu J; Zhao J; Jia S
    Opt Express; 2023 Jun; 31(13):20641-20650. PubMed ID: 37381183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient microwave-to-optical single-photon conversion with a single flying circular Rydberg atom.
    Liu YG; Xia K; Zhu SL
    Opt Express; 2021 Mar; 29(7):9942-9959. PubMed ID: 33820157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-sensitive amplification of an optical field using microwaves.
    Karigowda A; K V A; Nayak PK; Sudha S; Sanders BC; Bretenaker F; Narayanan A
    Opt Express; 2019 Oct; 27(22):32111-32121. PubMed ID: 31684429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driving Alkali Rydberg Transitions with a Phase-Modulated Optical Lattice.
    Cardman R; Raithel G
    Phys Rev Lett; 2023 Jul; 131(2):023201. PubMed ID: 37505947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave coupled Zeeman splitting spectroscopy of a cesium nP
    Fan J; Bai J; Song R; Jiao Y; Zhao J; Jia S
    Opt Express; 2024 Mar; 32(6):9297-9305. PubMed ID: 38571167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems.
    Zhang H; Ma Y; Liao K; Yang W; Liu Z; Ding D; Yan H; Li W; Zhang L
    Sci Bull (Beijing); 2024 May; 69(10):1515-1535. PubMed ID: 38614855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Rydberg eight-wave mixing process controlled in the nonlinear phase of a circularly polarized field.
    Che J; Zhang Z; Hu M; Shi X; Zhang Y
    Opt Express; 2018 Feb; 26(3):3054-3066. PubMed ID: 29401838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the permanent electric dipole moment of ultracold ground state
    Gong T; Ji Z; Du J; Zhao Y; Xiao L; Jia S
    Opt Express; 2021 Jan; 29(2):1558-1565. PubMed ID: 33726368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric-field induced dipole blockade with Rydberg atoms.
    Vogt T; Viteau M; Chotia A; Zhao J; Comparat D; Pillet P
    Phys Rev Lett; 2007 Aug; 99(7):073002. PubMed ID: 17930892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous three-wave and six-wave mixing of microwave and optical fields in an atomic medium.
    Pradosh KN; Saaswath JK; Narayanan A
    Opt Express; 2023 May; 31(11):18318-18326. PubMed ID: 37381544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum sensing of microwave electric fields based on Rydberg atoms.
    Yuan J; Yang W; Jing M; Zhang H; Jiao Y; Li W; Zhang L; Xiao L; Jia S
    Rep Prog Phys; 2023 Sep; 86(10):. PubMed ID: 37604116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide.
    Hogan SD; Agner JA; Merkt F; Thiele T; Filipp S; Wallraff A
    Phys Rev Lett; 2012 Feb; 108(6):063004. PubMed ID: 22401065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum-enabled millimetre wave to optical transduction using neutral atoms.
    Kumar A; Suleymanzade A; Stone M; Taneja L; Anferov A; Schuster DI; Simon J
    Nature; 2023 Mar; 615(7953):614-619. PubMed ID: 36949338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted Rydberg electromagnetically induced transparency.
    Vogt T; Gross C; Gallagher TF; Li W
    Opt Lett; 2018 Apr; 43(8):1822-1825. PubMed ID: 29652373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rabi resonance in coherent population trapping: microwave mixing scheme.
    Liu X; Lv YN; Kang S; Zou CL; Duan J; Ru N; Qu J
    Opt Express; 2021 Jan; 29(2):2466-2477. PubMed ID: 33726441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Trapping of Individual Rydberg Atoms in Ponderomotive Bottle Beam Traps.
    Barredo D; Lienhard V; Scholl P; de Léséleuc S; Boulier T; Browaeys A; Lahaye T
    Phys Rev Lett; 2020 Jan; 124(2):023201. PubMed ID: 32004042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersive microwave electrometry using Zeeman frequency modulation spectroscopy of electromagnetically induced transparency in Rydberg atoms.
    Jia F; Yu Y; Liu X; Zhang X; Zhang L; Wang F; Mei J; Zhang J; Xie F; Zhong Z
    Appl Opt; 2020 Sep; 59(27):8253-8258. PubMed ID: 32976410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.