BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29547563)

  • 1. Bias-Exchange Metadynamics Simulation of Membrane Permeation of 20 Amino Acids.
    Cao Z; Bian Y; Hu G; Zhao L; Kong Z; Yang Y; Wang J; Zhou Y
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29547563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different effects of cholesterol on membrane permeation of arginine and tryptophan revealed by bias-exchange metadynamics simulations.
    Cao Z; Zhang X; Wang C; Liu L; Zhao L; Wang J; Zhou Y
    J Chem Phys; 2019 Feb; 150(8):084106. PubMed ID: 30823753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer.
    Bond PJ; Wee CL; Sansom MS
    Biochemistry; 2008 Oct; 47(43):11321-31. PubMed ID: 18831536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outer membrane phospholipase A in phospholipid bilayers: a model system for concerted computational and experimental investigations of amino acid side chain partitioning into lipid bilayers.
    Fleming PJ; Freites JA; Moon CP; Tobias DJ; Fleming KG
    Biochim Biophys Acta; 2012 Feb; 1818(2):126-34. PubMed ID: 21816133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the water defect at the HIV-1 gp41 membrane spanning domain in bilayers with and without cholesterol using molecular simulations.
    Baker MK; Gangupomu VK; Abrams CF
    Biochim Biophys Acta; 2014 May; 1838(5):1396-405. PubMed ID: 24440660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affordable Membrane Permeability Calculations: Permeation of Short-Chain Alcohols through Pure-Lipid Bilayers and a Mammalian Cell Membrane.
    Tse CH; Comer J; Sang Chu SK; Wang Y; Chipot C
    J Chem Theory Comput; 2019 May; 15(5):2913-2924. PubMed ID: 30998342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study.
    Saito H; Shinoda W
    J Phys Chem B; 2011 Dec; 115(51):15241-50. PubMed ID: 22081997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures, dynamics, and water permeation free energy across bilayers of Lipid A and its analog studied with molecular dynamics simulation.
    Wei T; Huang T; Qiao B; Zhang M; Ma H; Zhang L
    J Phys Chem B; 2014 Nov; 118(46):13202-9. PubMed ID: 25310797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why can hydrogen sulfide permeate cell membranes?
    Riahi S; Rowley CN
    J Am Chem Soc; 2014 Oct; 136(43):15111-3. PubMed ID: 25323018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Cholesterol on the Thermodynamics and Kinetics of Passive Transport of Water through Lipid Membranes.
    Issack BB; Peslherbe GH
    J Phys Chem B; 2015 Jul; 119(29):9391-400. PubMed ID: 25679811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partitioning of nonsteroidal antiinflammatory drugs in lipid membranes: a molecular dynamics simulation study.
    Boggara MB; Krishnamoorti R
    Biophys J; 2010 Feb; 98(4):586-95. PubMed ID: 20159155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical Chemistry of Chloroquine Permeation through the Cell Membrane with Atomistic Detail.
    Paulikat M; Piccini G; Ippoliti E; Rossetti G; Arnesano F; Carloni P
    J Chem Inf Model; 2023 Nov; 63(22):7124-7132. PubMed ID: 37947485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy of WALP23 dimer association in DMPC, DPPC, and DOPC bilayers.
    Castillo N; Monticelli L; Barnoud J; Tieleman DP
    Chem Phys Lipids; 2013 Apr; 169():95-105. PubMed ID: 23415670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implicit membrane treatment of buried charged groups: application to peptide translocation across lipid bilayers.
    Lazaridis T; Leveritt JM; PeBenito L
    Biochim Biophys Acta; 2014 Sep; 1838(9):2149-59. PubMed ID: 24525075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment.
    MacCallum JL; Bennett WF; Tieleman DP
    J Gen Physiol; 2007 May; 129(5):371-7. PubMed ID: 17438118
    [No Abstract]   [Full Text] [Related]  

  • 18. Simulation of the spontaneous aggregation of phospholipids into bilayers.
    Marrink SJ; Lindahl E; Edholm O; Mark AE
    J Am Chem Soc; 2001 Sep; 123(35):8638-9. PubMed ID: 11525689
    [No Abstract]   [Full Text] [Related]  

  • 19. Molecular dynamics simulations of lipid bilayers: simple recipe of how to do it.
    Martinez-Seara H; Róg T
    Methods Mol Biol; 2013; 924():407-29. PubMed ID: 23034757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulation of Small Molecules Interacting with Biological Membranes.
    Martinotti C; Ruiz-Perez L; Deplazes E; Mancera RL
    Chemphyschem; 2020 Jul; 21(14):1486-1514. PubMed ID: 32452115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.