BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 29547617)

  • 1. A population genetic interpretation of GWAS findings for human quantitative traits.
    Simons YB; Bullaughey K; Hudson RR; Sella G
    PLoS Biol; 2018 Mar; 16(3):e2002985. PubMed ID: 29547617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference of the genetic architecture underlying BMI and height with the use of 20,240 sibling pairs.
    Hemani G; Yang J; Vinkhuyzen A; Powell JE; Willemsen G; Hottenga JJ; Abdellaoui A; Mangino M; Valdes AM; Medland SE; Madden PA; Heath AC; Henders AK; Nyholt DR; de Geus EJ; Magnusson PK; Ingelsson E; Montgomery GW; Spector TD; Boomsma DI; Pedersen NL; Martin NG; Visscher PM
    Am J Hum Genet; 2013 Nov; 93(5):865-75. PubMed ID: 24183453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The omnigenic model and polygenic prediction of complex traits.
    Mathieson I
    Am J Hum Genet; 2021 Sep; 108(9):1558-1563. PubMed ID: 34331855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A GWAS assessment of the contribution of genomic imprinting to the variation of body mass index in mice.
    Hu Y; Rosa GJ; Gianola D
    BMC Genomics; 2015 Aug; 16(1):576. PubMed ID: 26238105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits.
    Ning Z; Lee Y; Joshi PK; Wilson JF; Pawitan Y; Shen X
    Am J Hum Genet; 2017 Dec; 101(6):903-912. PubMed ID: 29198721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Nature of Genetic Variation for Complex Traits Revealed by GWAS and Regional Heritability Mapping Analyses.
    Caballero A; Tenesa A; Keightley PD
    Genetics; 2015 Dec; 201(4):1601-13. PubMed ID: 26482794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The action of stabilizing selection, mutation, and drift on epistatic quantitative traits.
    Avila V; Pérez-Figueroa A; Caballero A; Hill WG; García-Dorado A; López-Fanjul C
    Evolution; 2014 Jul; 68(7):1974-87. PubMed ID: 24689841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heritability of complex traits in sub-populations experiencing bottlenecks and growth.
    Taylor CS; Lawson DJ
    J Hum Genet; 2024 Jul; 69(7):329-335. PubMed ID: 38589509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A global overview of pleiotropy and genetic architecture in complex traits.
    Watanabe K; Stringer S; Frei O; Umićević Mirkov M; de Leeuw C; Polderman TJC; van der Sluis S; Andreassen OA; Neale BM; Posthuma D
    Nat Genet; 2019 Sep; 51(9):1339-1348. PubMed ID: 31427789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel method to estimate the phenotypic variation explained by genome-wide association studies reveals large fraction of the missing heritability.
    Kutalik Z; Whittaker J; Waterworth D; ; Beckmann JS; Bergmann S
    Genet Epidemiol; 2011 Jul; 35(5):341-9. PubMed ID: 21465548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mutation matrix and the evolution of evolvability.
    Jones AG; Arnold SJ; Bürger R
    Evolution; 2007 Apr; 61(4):727-45. PubMed ID: 17439608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies.
    Sella G; Barton NH
    Annu Rev Genomics Hum Genet; 2019 Aug; 20():461-493. PubMed ID: 31283361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic dissection of variation in clutch size and egg mass in a wild great tit (Parus major) population.
    Santure AW; De Cauwer I; Robinson MR; Poissant J; Sheldon BC; Slate J
    Mol Ecol; 2013 Aug; 22(15):3949-62. PubMed ID: 23889544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry.
    Yengo L; Sidorenko J; Kemper KE; Zheng Z; Wood AR; Weedon MN; Frayling TM; Hirschhorn J; Yang J; Visscher PM;
    Hum Mol Genet; 2018 Oct; 27(20):3641-3649. PubMed ID: 30124842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging GWAS for complex traits to detect signatures of natural selection in humans.
    Guo J; Yang J; Visscher PM
    Curr Opin Genet Dev; 2018 Dec; 53():9-14. PubMed ID: 29913353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic Architecture of Domestication-Related Traits in Maize.
    Xue S; Bradbury PJ; Casstevens T; Holland JB
    Genetics; 2016 Sep; 204(1):99-113. PubMed ID: 27412713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data.
    Masotti M; Guo B; Wu B
    Biometrics; 2019 Dec; 75(4):1076-1085. PubMed ID: 31021400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of genetic drift and selection on quantitative traits in a plant pathogenic fungus.
    Stefansson TS; McDonald BA; Willi Y
    PLoS One; 2014; 9(11):e112523. PubMed ID: 25383967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea).
    Dong L; Xiao S; Wang Q; Wang Z
    BMC Genomics; 2016 Jun; 17():460. PubMed ID: 27301965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.