These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 29547921)
1. CoABind: a novel algorithm for Coenzyme A (CoA)- and CoA derivatives-binding residues prediction. Meng Q; Peng Z; Yang J Bioinformatics; 2018 Aug; 34(15):2598-2604. PubMed ID: 29547921 [TBL] [Abstract][Full Text] [Related]
2. An ensemble approach to protein fold classification by integration of template-based assignment and support vector machine classifier. Xia J; Peng Z; Qi D; Mu H; Yang J Bioinformatics; 2017 Mar; 33(6):863-870. PubMed ID: 28039166 [TBL] [Abstract][Full Text] [Related]
3. Improving Sequence-Based Prediction of Protein-Peptide Binding Residues by Introducing Intrinsic Disorder and a Consensus Method. Zhao Z; Peng Z; Yang J J Chem Inf Model; 2018 Jul; 58(7):1459-1468. PubMed ID: 29895149 [TBL] [Abstract][Full Text] [Related]
4. Improving the prediction of protein-nucleic acids binding residues via multiple sequence profiles and the consensus of complementary methods. Su H; Liu M; Sun S; Peng Z; Yang J Bioinformatics; 2019 Mar; 35(6):930-936. PubMed ID: 30169574 [TBL] [Abstract][Full Text] [Related]
5. Structure-based prediction of protein- peptide binding regions using Random Forest. Taherzadeh G; Zhou Y; Liew AW; Yang Y Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926 [TBL] [Abstract][Full Text] [Related]
6. Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites. Murakami Y; Mizuguchi K Bioinformatics; 2010 Aug; 26(15):1841-8. PubMed ID: 20529890 [TBL] [Abstract][Full Text] [Related]
7. Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information. Ma X; Guo J; Liu HD; Xie JM; Sun X IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1766-75. PubMed ID: 22868682 [TBL] [Abstract][Full Text] [Related]
8. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. Wang S; Sun S; Li Z; Zhang R; Xu J PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090 [TBL] [Abstract][Full Text] [Related]
9. PAIRpred: partner-specific prediction of interacting residues from sequence and structure. Minhas Fu; Geiss BJ; Ben-Hur A Proteins; 2014 Jul; 82(7):1142-55. PubMed ID: 24243399 [TBL] [Abstract][Full Text] [Related]
10. LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction. Kauffman C; Karypis G Bioinformatics; 2009 Dec; 25(23):3099-107. PubMed ID: 19786483 [TBL] [Abstract][Full Text] [Related]
11. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain-domain interaction prediction. Xu D; Jaroszewski L; Li Z; Godzik A Bioinformatics; 2015 Jul; 31(13):2098-105. PubMed ID: 25701568 [TBL] [Abstract][Full Text] [Related]
12. Prediction of microRNA-binding residues in protein using a Laplacian support vector machine based on sequence information. Ma X; Guo J; Sun X J Bioinform Comput Biol; 2018 Jun; 16(3):1840009. PubMed ID: 29591488 [TBL] [Abstract][Full Text] [Related]
13. Computational identification of binding energy hot spots in protein-RNA complexes using an ensemble approach. Pan Y; Wang Z; Zhan W; Deng L Bioinformatics; 2018 May; 34(9):1473-1480. PubMed ID: 29281004 [TBL] [Abstract][Full Text] [Related]
14. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information. Liu R; Hu J BMC Bioinformatics; 2011 May; 12():207. PubMed ID: 21612668 [TBL] [Abstract][Full Text] [Related]
15. Predicting protein-ligand binding residues with deep convolutional neural networks. Cui Y; Dong Q; Hong D; Wang X BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287 [TBL] [Abstract][Full Text] [Related]
16. DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches. Liu R; Hu J Proteins; 2013 Nov; 81(11):1885-99. PubMed ID: 23737141 [TBL] [Abstract][Full Text] [Related]
18. Improved method for predicting beta-turn using support vector machine. Zhang Q; Yoon S; Welsh WJ Bioinformatics; 2005 May; 21(10):2370-4. PubMed ID: 15797917 [TBL] [Abstract][Full Text] [Related]
19. CATHER: a novel threading algorithm with predicted contacts. Du Z; Pan S; Wu Q; Peng Z; Yang J Bioinformatics; 2020 Apr; 36(7):2119-2125. PubMed ID: 31790141 [TBL] [Abstract][Full Text] [Related]
20. Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals. Hu X; Dong Q; Yang J; Zhang Y Bioinformatics; 2016 Nov; 32(21):3260-3269. PubMed ID: 27378301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]