These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29548089)

  • 1. Formation of rogue waves from a locally perturbed condensate.
    Gelash AA
    Phys Rev E; 2018 Feb; 97(2-1):022208. PubMed ID: 29548089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rogue periodic waves of the focusing nonlinear Schrödinger equation.
    Chen J; Pelinovsky DE
    Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170814. PubMed ID: 29507521
    [No Abstract]   [Full Text] [Related]  

  • 3. Nonlinear Talbot effect of rogue waves.
    Zhang Y; Belić MR; Zheng H; Chen H; Li C; Song J; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032902. PubMed ID: 24730908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse scattering transform analysis of rogue waves using local periodization procedure.
    Randoux S; Suret P; El G
    Sci Rep; 2016 Jul; 6():29238. PubMed ID: 27385164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergent rogue wave structures and statistics in spontaneous modulation instability.
    Toenger S; Godin T; Billet C; Dias F; Erkintalo M; Genty G; Dudley JM
    Sci Rep; 2015 May; 5():10380. PubMed ID: 25993126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second-order rogue wave breathers in the nonlinear Schrödinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient.
    Zhong WP; Belić M; Zhang Y
    Opt Express; 2015 Feb; 23(3):3708-16. PubMed ID: 25836223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme wave excitation from localized phase-shift perturbations.
    He Y; Witt A; Trillo S; Chabchoub A; Hoffmann N
    Phys Rev E; 2022 Oct; 106(4):L043101. PubMed ID: 36397566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear stage of modulation instability.
    Zakharov VE; Gelash AA
    Phys Rev Lett; 2013 Aug; 111(5):054101. PubMed ID: 23952402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis of the Hirota equation: Modulational instability, breathers, rogue waves, and interactions.
    Wang L; Yan Z; Guo B
    Chaos; 2020 Jan; 30(1):013114. PubMed ID: 32013485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear Fourier classification of 663 rogue waves measured in the Philippine Sea.
    Lee YC; Brühl M; Doong DJ; Wahls S
    PLoS One; 2024; 19(5):e0301709. PubMed ID: 38743649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects.
    Zhang JH; Wang L; Liu C
    Proc Math Phys Eng Sci; 2017 Mar; 473(2199):20160681. PubMed ID: 28413335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher-order matrix nonlinear Schrödinger equation with the negative coherent coupling: binary Darboux transformation, vector solitons, breathers and rogue waves.
    Du Z; Nie Y; Guo Q
    Opt Express; 2023 Dec; 31(25):42507-42523. PubMed ID: 38087623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers.
    Sun WR; Liu DY; Xie XY
    Chaos; 2017 Apr; 27(4):043114. PubMed ID: 28456173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamics of periodic breathers.
    Chabchoub A; Kibler B; Dudley JM; Akhmediev N
    Philos Trans A Math Phys Eng Sci; 2014 Oct; 372(2027):. PubMed ID: 25246673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation instability and rogue waves for two and three dimensional nonlinear Klein-Gordon equation.
    Yang Z; Mu G; Qin Z
    Chaos; 2024 Sep; 34(9):. PubMed ID: 39312728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Kundu-nonlinear Schrödinger equation: Rogue waves, breathers, and mixed interaction solutions.
    Zhang X; Zhao Q
    Chaos; 2024 May; 34(5):. PubMed ID: 38787312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth rate of modulation instability driven by superregular breathers.
    Liu C; Yang ZY; Yang WL
    Chaos; 2018 Aug; 28(8):083110. PubMed ID: 30180607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear dynamics of trapped waves on jet currents and rogue waves.
    Shrira VI; Slunyaev AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):041002. PubMed ID: 24827178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the role of four-wave mixing effect in the interactions between nonlinear modes of coupled generalized nonlinear Schrödinger equation.
    Vishnu Priya N; Senthilvelan M; Rangarajan G
    Chaos; 2019 Dec; 29(12):123135. PubMed ID: 31893664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rogue wave spectra of the Kundu-Eckhaus equation.
    Bayındır C
    Phys Rev E; 2016 Jun; 93(6):062215. PubMed ID: 27415263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.