These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29548098)

  • 1. Fractional Brownian motion with a reflecting wall.
    Wada AHO; Vojta T
    Phys Rev E; 2018 Feb; 97(2-1):020102. PubMed ID: 29548098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reflected fractional Brownian motion in one and higher dimensions.
    Vojta T; Halladay S; Skinner S; Janušonis S; Guggenberger T; Metzler R
    Phys Rev E; 2020 Sep; 102(3-1):032108. PubMed ID: 33075869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion.
    Jeon JH; Chechkin AV; Metzler R
    Phys Chem Chem Phys; 2014 Aug; 16(30):15811-7. PubMed ID: 24968336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mean-squared-displacement statistical test for fractional Brownian motion.
    Sikora G; Burnecki K; Wyłomańska A
    Phys Rev E; 2017 Mar; 95(3-1):032110. PubMed ID: 28415337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probability density of the fractional Langevin equation with reflecting walls.
    Vojta T; Skinner S; Metzler R
    Phys Rev E; 2019 Oct; 100(4-1):042142. PubMed ID: 31770994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study.
    Saxton MJ
    Biophys J; 2001 Oct; 81(4):2226-40. PubMed ID: 11566793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-similar Gaussian processes for modeling anomalous diffusion.
    Lim SC; Muniandy SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021114. PubMed ID: 12241157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion.
    Cushman JH; O'Malley D; Park M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.
    Berry H; Chaté H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022708. PubMed ID: 25353510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks.
    Liang Y; Wang W; Metzler R; Cherstvy AG
    Phys Rev E; 2023 Sep; 108(3-1):034113. PubMed ID: 37849140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.
    Jeon JH; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021103. PubMed ID: 20365526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometry controlled anomalous diffusion in random fractal geometries: looking beyond the infinite cluster.
    Mardoukhi Y; Jeon JH; Metzler R
    Phys Chem Chem Phys; 2015 Nov; 17(44):30134-47. PubMed ID: 26503611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonrenewal resetting of scaled Brownian motion.
    Bodrova AS; Chechkin AV; Sokolov IM
    Phys Rev E; 2019 Jul; 100(1-1):012119. PubMed ID: 31499839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions.
    Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A
    Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids.
    Weiss M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):010101. PubMed ID: 23944389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-particle anomalous diffusion: probability density functions and self-similar stochastic processes.
    Pagnini G; Mura A; Mainardi F
    Philos Trans A Math Phys Eng Sci; 2013 May; 371(1990):20120154. PubMed ID: 23547231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Fractional Brownian Dynamics Method for Simulating the Dynamics of Confined Bottle-Brush Polymers in Viscoelastic Solution.
    Yu S; Chu R; Wu G; Meng X
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytic model for transient anomalous diffusion with highly persistent correlations.
    Carnaffan S; Kawai R
    Phys Rev E; 2019 Jun; 99(6-1):062120. PubMed ID: 31330708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.