BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 29548118)

  • 1. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions.
    Reinken H; Klapp SHL; Bär M; Heidenreich S
    Phys Rev E; 2018 Feb; 97(2-1):022613. PubMed ID: 29548118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic length-scale selection in microswimmer suspensions.
    Heidenreich S; Dunkel J; Klapp SH; Bär M
    Phys Rev E; 2016 Aug; 94(2-1):020601. PubMed ID: 27627229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscale simulations of hydrodynamic squirmer interactions.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensional rheology of active suspensions.
    Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056307. PubMed ID: 20866322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alignment and propulsion of squirmer pusher-puller dumbbells.
    Clopés J; Gompper G; Winkler RG
    J Chem Phys; 2022 May; 156(19):194901. PubMed ID: 35597650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear dynamics of a microswimmer in Poiseuille flow.
    Zöttl A; Stark H
    Phys Rev Lett; 2012 May; 108(21):218104. PubMed ID: 23003306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective chemotactic dynamics in the presence of self-generated fluid flows.
    Lushi E; Goldstein RE; Shelley MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):040902. PubMed ID: 23214522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparticle collision dynamics for tensorial nematodynamics.
    Mandal S; Mazza MG
    Phys Rev E; 2019 Jun; 99(6-1):063319. PubMed ID: 31330733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of coherent structures and large-scale flows in motile suspensions.
    Saintillan D; Shelley MJ
    J R Soc Interface; 2012 Mar; 9(68):571-85. PubMed ID: 21865254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle-scale statistical theory for hydrodynamically induced polar ordering in microswimmer suspensions.
    Hoell C; Löwen H; Menzel AM
    J Chem Phys; 2018 Oct; 149(14):144902. PubMed ID: 30316257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow properties and hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-focusing and jet instability of a microswimmer suspension.
    Jibuti L; Qi L; Misbah C; Zimmermann W; Rafaï S; Peyla P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063019. PubMed ID: 25615199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of ellipsoidal tracers in swimming algal suspensions.
    Yang O; Peng Y; Liu Z; Tang C; Xu X; Cheng X
    Phys Rev E; 2016 Oct; 94(4-1):042601. PubMed ID: 27841492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion.
    Clopés J; Gompper G; Winkler RG
    Soft Matter; 2020 Dec; 16(47):10676-10687. PubMed ID: 33089276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamics Defines the Stable Swimming Direction of Spherical Squirmers in a Nematic Liquid Crystal.
    Lintuvuori JS; Würger A; Stratford K
    Phys Rev Lett; 2017 Aug; 119(6):068001. PubMed ID: 28949617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vortex arrays and mesoscale turbulence of self-propelled particles.
    Grossmann R; Romanczuk P; Bär M; Schimansky-Geier L
    Phys Rev Lett; 2014 Dec; 113(25):258104. PubMed ID: 25554911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.
    Forest MG; Wang Q; Zhou R
    Soft Matter; 2015 Aug; 11(32):6393-402. PubMed ID: 26169540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective viscosity of a two-dimensional suspension of interacting active particles.
    Moradi M; Najafi A
    Phys Rev E; 2017 Aug; 96(2-1):022611. PubMed ID: 28950587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering of microswimmers: interplay of shape and hydrodynamics.
    Theers M; Westphal E; Qi K; Winkler RG; Gompper G
    Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments.
    Goddard BD; Nold A; Savva N; Yatsyshin P; Kalliadasis S
    J Phys Condens Matter; 2013 Jan; 25(3):035101. PubMed ID: 23220969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.