These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 29548118)

  • 21. Phase Transition to Large Scale Coherent Structures in Two-Dimensional Active Matter Turbulence.
    Linkmann M; Boffetta G; Marchetti MC; Eckhardt B
    Phys Rev Lett; 2019 May; 122(21):214503. PubMed ID: 31283308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-ciliated microswimmers-metachronal coordination and helical swimming.
    Rode S; Elgeti J; Gompper G
    Eur Phys J E Soft Matter; 2021 Jun; 44(6):76. PubMed ID: 34101070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. State diagram of a three-sphere microswimmer in a channel.
    Daddi-Moussa-Ider A; Lisicki M; Mathijssen AJTM; Hoell C; Goh S; Bławzdziewicz J; Menzel AM; Löwen H
    J Phys Condens Matter; 2018 Jun; 30(25):254004. PubMed ID: 29757157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrodynamic interactions between squirmers near walls: far-field dynamics and near-field cluster stability.
    Théry A; Maaß CC; Lauga E
    R Soc Open Sci; 2023 Jun; 10(6):230223. PubMed ID: 37388310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards an analytical description of active microswimmers in clean and in surfactant-covered drops.
    Sprenger AR; Shaik VA; Ardekani AM; Lisicki M; Mathijssen AJTM; Guzmán-Lastra F; Löwen H; Menzel AM; Daddi-Moussa-Ider A
    Eur Phys J E Soft Matter; 2020 Sep; 43(9):58. PubMed ID: 32920676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrodynamic interaction of swimming organisms in an inertial regime.
    Li G; Ostace A; Ardekani AM
    Phys Rev E; 2016 Nov; 94(5-1):053104. PubMed ID: 27967048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-regulation in self-propelled nematic fluids.
    Baskaran A; Marchetti MC
    Eur Phys J E Soft Matter; 2012 Sep; 35(9):95. PubMed ID: 23053844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relaxation of the distribution function tails for systems described by Fokker-Planck equations.
    Chavanis PH; Lemou M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061106. PubMed ID: 16485930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lattice-Boltzmann simulations of microswimmer-tracer interactions.
    de Graaf J; Stenhammar J
    Phys Rev E; 2017 Feb; 95(2-1):023302. PubMed ID: 28297968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit.
    Theers M; Westphal E; Gompper G; Winkler RG
    Soft Matter; 2016 Sep; 12(35):7372-85. PubMed ID: 27529776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microscopic derivation of the hydrodynamics of active-Brownian-particle suspensions.
    Steffenoni S; Falasco G; Kroy K
    Phys Rev E; 2017 May; 95(5-1):052142. PubMed ID: 28618517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise.
    Schaar K; Zöttl A; Stark H
    Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamical density functional theory for microswimmers.
    Menzel AM; Saha A; Hoell C; Löwen H
    J Chem Phys; 2016 Jan; 144(2):024115. PubMed ID: 26772562
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise.
    Ryan SD; Haines BM; Berlyand L; Ziebert F; Aranson IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):050904. PubMed ID: 21728480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the cross-streamline lift of microswimmers in viscoelastic flows.
    Choudhary A; Stark H
    Soft Matter; 2021 Dec; 18(1):48-52. PubMed ID: 34878484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-induced polar order of active Brownian particles in a harmonic trap.
    Hennes M; Wolff K; Stark H
    Phys Rev Lett; 2014 Jun; 112(23):238104. PubMed ID: 24972231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting and Optimizing Microswimmer Performance from the Hydrodynamics of Its Components: The Relevance of Interactions.
    Giuliani N; Heltai L; DeSimone A
    Soft Robot; 2018 Aug; 5(4):410-424. PubMed ID: 29762082
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A hydrodynamic mechanism for attraction of undulatory microswimmers to surfaces (bordertaxis).
    Yuan J; Raizen DM; Bau HH
    J R Soc Interface; 2015 Aug; 12(109):20150227. PubMed ID: 26156298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrodynamics of pair-annihilating disclination lines in nematic liquid crystals.
    Svensek D; Zumer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021712. PubMed ID: 12241201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Symmetric Mixtures of Pusher and Puller Microswimmers Behave as Noninteracting Suspensions.
    Bárdfalvy D; Anjum S; Nardini C; Morozov A; Stenhammar J
    Phys Rev Lett; 2020 Jul; 125(1):018003. PubMed ID: 32678625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.