These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29548135)

  • 1. Generalized network modeling of capillary-dominated two-phase flow.
    Raeini AQ; Bijeljic B; Blunt MJ
    Phys Rev E; 2018 Feb; 97(2-1):023308. PubMed ID: 29548135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media.
    Raeini AQ; Bijeljic B; Blunt MJ
    Phys Rev E; 2017 Jul; 96(1-1):013312. PubMed ID: 29347276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore-scale modeling of two-phase flow: A comparison of the generalized network model to direct numerical simulation.
    Giudici LM; Raeini AQ; Akai T; Blunt MJ; Bijeljic B
    Phys Rev E; 2023 Mar; 107(3-2):035107. PubMed ID: 37073001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of model predictions of pore-scale fluid distributions during two-phase flow.
    Bultreys T; Lin Q; Gao Y; Raeini AQ; AlRatrout A; Bijeljic B; Blunt MJ
    Phys Rev E; 2018 May; 97(5-1):053104. PubMed ID: 29906889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of fluid occupancy in fractures using network modeling and x-ray microtomography. I: data conditioning and model description.
    Karpyn ZT; Piri M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016315. PubMed ID: 17677571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore-scale network model for three-phase flow in mixed-wet porous media.
    van Dijke MI; Sorbie KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046302. PubMed ID: 12443317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive transport in porous media: pore-network model approach compared to pore-scale model.
    Varloteaux C; Vu MT; Békri S; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023010. PubMed ID: 23496613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating computational fluid dynamic, artificial intelligence techniques, and pore network modeling to predict relative permeability of gas condensate.
    Zeinedini E; Dabir B; Dadvar M
    Sci Rep; 2022 Dec; 12(1):21457. PubMed ID: 36509787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability.
    van der Linden JH; Narsilio GA; Tordesillas A
    Phys Rev E; 2016 Aug; 94(2-1):022904. PubMed ID: 27627377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How boundary slip controls emergent Darcy flow of liquids in tortuous and in capillary pores.
    Singh K
    Phys Rev E; 2020 Jul; 102(1-1):013101. PubMed ID: 32794951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026302. PubMed ID: 15783414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eigenvector centrality for geometric and topological characterization of porous media.
    Jimenez-Martinez J; Negre CFA
    Phys Rev E; 2017 Jul; 96(1-1):013310. PubMed ID: 29347210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of Hydraulic Properties of Uncoated Paper: Image Analysis and Pore-Scale Modeling.
    Aslannejad H; Hassanizadeh SM
    Transp Porous Media; 2017; 120(1):67-81. PubMed ID: 32009698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains.
    Yiotis A; Karadimitriou NK; Zarikos I; Steeb H
    Sci Rep; 2021 Feb; 11(1):3891. PubMed ID: 33594146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pore-scale investigation of a multiphase porous media system.
    Al-Raoush RI; Willson CS
    J Contam Hydrol; 2005 Mar; 77(1-2):67-89. PubMed ID: 15722173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore-by-pore modeling, analysis, and prediction of two-phase flow in mixed-wet rocks.
    Foroughi S; Bijeljic B; Lin Q; Raeini AQ; Blunt MJ
    Phys Rev E; 2020 Aug; 102(2-1):023302. PubMed ID: 32942424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of imbibition in unconsolidated granular materials.
    Gladkikh M; Bryant S
    J Colloid Interface Sci; 2005 Aug; 288(2):526-39. PubMed ID: 15927623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.
    Zhang P; Hu L; Meegoda JN
    Materials (Basel); 2017 Jan; 10(2):. PubMed ID: 28772465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.