These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29548242)

  • 1. Corner-transport-upwind lattice Boltzmann model for bubble cavitation.
    Sofonea V; Biciuşcă T; Busuioc S; Ambruş VE; Gonnella G; Lamura A
    Phys Rev E; 2018 Feb; 97(2-1):023309. PubMed ID: 29548242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM.
    Yang Y; Shan M; Kan X; Shangguan Y; Han Q
    Ultrason Sonochem; 2020 Apr; 62():104873. PubMed ID: 31806544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigation on acoustic cavitation characteristics of an air-vapor bubble: Effect of equation of state for interior gases.
    Qin D; Lei S; Chen B; Li Z; Wang W; Ji X
    Ultrason Sonochem; 2023 Jul; 97():106456. PubMed ID: 37271030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of collapsing cavitation bubbles in various liquids by lattice Boltzmann model coupled with the Redlich-Kwong-Soave equation of state.
    Ezzatneshan E; Vaseghnia H
    Phys Rev E; 2020 Nov; 102(5-1):053309. PubMed ID: 33327092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shrinkage of bubbles and drops in the lattice Boltzmann equation method for nonideal gases.
    Zheng L; Lee T; Guo Z; Rumschitzki D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033302. PubMed ID: 24730962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consistent lattice Boltzmann equations for phase transitions.
    Siebert DN; Philippi PC; Mattila KK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053310. PubMed ID: 25493907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bubble formation in lattice Boltzmann immiscible shear flow.
    Qin RS
    J Chem Phys; 2007 Mar; 126(11):114506. PubMed ID: 17381219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver.
    Mohammadi-Shad M; Lee T
    Phys Rev E; 2017 Jul; 96(1-1):013306. PubMed ID: 29347090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of state equation effect on single acoustic cavitation bubble's phenomenon.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2017 Sep; 38():174-188. PubMed ID: 28633817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubble evolution and properties in homogeneous nucleation simulations.
    Angélil R; Diemand J; Tanaka KK; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063301. PubMed ID: 25615216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between a cavitation bubble and solidification front under the effects of ultrasound: Experiments and lattice Boltzmann modeling.
    Chen Y; Zhang Q; Wang X; Yao Z
    Ultrason Sonochem; 2022 Dec; 91():106221. PubMed ID: 36395625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical studies of bubble necking in viscous liquids.
    Quan S; Hua J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066303. PubMed ID: 18643367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical modelling of acoustic cavitation threshold in water with non-condensable bubble nuclei.
    Hong S; Son G
    Ultrason Sonochem; 2022 Feb; 83():105932. PubMed ID: 35121570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional lattice-Boltzmann model of van der Waals fluids.
    Kalarakis AN; Burganos VN; Payatakes AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016702. PubMed ID: 12636632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern formation in liquid-vapor systems under periodic potential and shear.
    Coclite A; Gonnella G; Lamura A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063303. PubMed ID: 25019908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations.
    Liu H; Valocchi AJ; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046309. PubMed ID: 22680576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids.
    Lallemand P; D'Humières D; Luo LS; Rubinstein R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021203. PubMed ID: 12636662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regimes of bubble volume oscillations in a pipe.
    Jeurissen R; Wijshoff H; van den Berg M; Reinten H; Lohse D
    J Acoust Soc Am; 2011 Nov; 130(5):3220-32. PubMed ID: 22087994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.