These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 29548254)

  • 1. Two-dimensional Ising model on random lattices with constant coordination number.
    Schrauth M; Richter JAJ; Portela JSE
    Phys Rev E; 2018 Feb; 97(2-1):022144. PubMed ID: 29548254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous and discontinuous absorbing-state phase transitions on Voronoi-Delaunay random lattices.
    de Oliveira MM; Alves SG; Ferreira SC
    Phys Rev E; 2016 Jan; 93(1):012110. PubMed ID: 26871027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination.
    Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropy of diluted antiferromagnetic Ising models on frustrated lattices using the Wang-Landau method.
    Shevchenko Y; Nefedev K; Okabe Y
    Phys Rev E; 2017 May; 95(5-1):052132. PubMed ID: 28618636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-dimensional spin-anisotropic kinetic Ising model subject to quenched disorder.
    Menyhárd N; Odor G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021103. PubMed ID: 17930002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal dependence on disorder of two-dimensional randomly diluted and random-bond +/-J Ising models.
    Hasenbusch M; Toldin FP; Pelissetto A; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011110. PubMed ID: 18763922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Violation of the Harris-Barghathi-Vojta Criterion.
    Schrauth M; Portela JSE; Goth F
    Phys Rev Lett; 2018 Sep; 121(10):100601. PubMed ID: 30240237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometry-induced nonequilibrium phase transition in sandpiles.
    Najafi MN; Cheraghalizadeh J; Luković M; Herrmann HJ
    Phys Rev E; 2020 Mar; 101(3-1):032116. PubMed ID: 32289889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infinite-randomness critical point in the two-dimensional disordered contact process.
    Vojta T; Farquhar A; Mast J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011111. PubMed ID: 19257005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universality of continuous phase transitions on random Voronoi graphs.
    Schrauth M; Portela JSE
    Phys Rev E; 2019 Dec; 100(6-1):062118. PubMed ID: 31962429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biswas-Chatterjee-Sen Model on Solomon Networks with Two Three-Dimensional Lattices.
    Oliveira GS; Alves TA; Alves GA; Lima FW; Plascak JA
    Entropy (Basel); 2024 Jul; 26(7):. PubMed ID: 39056949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Majority-vote model on a random lattice.
    Lima FW; Fulco UL; Costa Filho RN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036105. PubMed ID: 15903491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. de Almeida-Thouless instability in short-range Ising spin glasses.
    Singh RRP; Young AP
    Phys Rev E; 2017 Jul; 96(1-1):012127. PubMed ID: 29347252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical evidence of hyperscaling violation in wetting transitions of the random-bond Ising model in d=2 dimensions.
    Albano EV; Luque L; Trobo ML; Binder K
    Phys Rev E; 2017 Feb; 95(2-1):022801. PubMed ID: 28297842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cluster Monte Carlo simulation of the transverse Ising model.
    Blöte HW; Deng Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066110. PubMed ID: 12513350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum critical behavior of the quantum Ising model on fractal lattices.
    Yi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012118. PubMed ID: 25679581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model using Monte Carlo simulations.
    Szukowski G; Kamieniarz G; Musiał G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031124. PubMed ID: 18517346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field.
    Korniss G; White CJ; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method.
    Xiong W; Zhong F; Yuan W; Fan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase transition of a one-dimensional Ising model with distance-dependent connections.
    Chang Y; Sun L; Cai X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021101. PubMed ID: 17930000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.