These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 29548257)
21. Probing the active-site requirements of human intestinal N-terminal maltase glucoamylase: the effect of replacing the sulfate moiety by a methyl ether in ponkoranol, a naturally occurring α-glucosidase inhibitor. Eskandari R; Jones K; Rose DR; Pinto BM Bioorg Med Chem Lett; 2010 Oct; 20(19):5686-9. PubMed ID: 20801033 [TBL] [Abstract][Full Text] [Related]
22. Glucoamylase originating from Schwanniomyces occidentalis is a typical alpha-glucosidase. Sato F; Okuyama M; Nakai H; Mori H; Kimura A; Chiba S Biosci Biotechnol Biochem; 2005 Oct; 69(10):1905-13. PubMed ID: 16244441 [TBL] [Abstract][Full Text] [Related]
23. Naringenin inhibits α-glucosidase activity: a promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Priscilla DH; Roy D; Suresh A; Kumar V; Thirumurugan K Chem Biol Interact; 2014 Mar; 210():77-85. PubMed ID: 24412302 [TBL] [Abstract][Full Text] [Related]
24. Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis. Diaz-Sotomayor M; Quezada-Calvillo R; Avery SE; Chacko SK; Yan LK; Lin AH; Ao ZH; Hamaker BR; Nichols BL J Pediatr Gastroenterol Nutr; 2013 Dec; 57(6):704-12. PubMed ID: 23838818 [TBL] [Abstract][Full Text] [Related]
25. Mucosal C-terminal maltase-glucoamylase hydrolyzes large size starch digestion products that may contribute to rapid postprandial glucose generation. Lee BH; Lin AH; Nichols BL; Jones K; Rose DR; Quezada-Calvillo R; Hamaker BR Mol Nutr Food Res; 2014 May; 58(5):1111-21. PubMed ID: 24442968 [TBL] [Abstract][Full Text] [Related]
26. Fungal transformation of cedryl acetate and α-glucosidase inhibition assay, quantum mechanical calculations and molecular docking studies of its metabolites. Sultan S; Choudhary MI; Khan SN; Fatima U; Atif M; Ali RA; Rahman AU; Fatmi MQ Eur J Med Chem; 2013 Apr; 62():764-70. PubMed ID: 23455027 [TBL] [Abstract][Full Text] [Related]
27. Inhibition of recombinant human maltase glucoamylase by salacinol and derivatives. Rossi EJ; Sim L; Kuntz DA; Hahn D; Johnston BD; Ghavami A; Szczepina MG; Kumar NS; Sterchi EE; Nichols BL; Pinto BM; Rose DR FEBS J; 2006 Jun; 273(12):2673-83. PubMed ID: 16817895 [TBL] [Abstract][Full Text] [Related]
28. QM/MM studies on the glycosylation mechanism of rice BGlu1 β-glucosidase. Wang J; Hou Q; Dong L; Liu Y; Liu C J Mol Graph Model; 2011 Sep; 30():148-52. PubMed ID: 21802967 [TBL] [Abstract][Full Text] [Related]
29. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). Ao Z; Quezada-Calvillo R; Sim L; Nichols BL; Rose DR; Sterchi EE; Hamaker BR FEBS Lett; 2007 May; 581(13):2381-8. PubMed ID: 17485087 [TBL] [Abstract][Full Text] [Related]
30. The effect of polyhydroxylated alkaloids on maltase-glucoamylase. Shang Q; Xiang J; Zhang H; Li Q; Tang Y PLoS One; 2013; 8(8):e70841. PubMed ID: 23967118 [TBL] [Abstract][Full Text] [Related]
31. The effect of heteroatom substitution of sulfur for selenium in glucosidase inhibitors on intestinal α-glucosidase activities. Eskandari R; Jones K; Rose DR; Pinto BM Chem Commun (Camb); 2011 Aug; 47(32):9134-6. PubMed ID: 21750824 [TBL] [Abstract][Full Text] [Related]
32. Retaining glycosyltransferase mechanism studied by QM/MM methods: lipopolysaccharyl-α-1,4-galactosyltransferase C transfers α-galactose via an oxocarbenium ion-like transition state. Gómez H; Polyak I; Thiel W; Lluch JM; Masgrau L J Am Chem Soc; 2012 Mar; 134(10):4743-52. PubMed ID: 22352786 [TBL] [Abstract][Full Text] [Related]
33. The catalytic mechanism of mouse renin studied with QM/MM calculations. Brás NF; Ramos MJ; Fernandes PA Phys Chem Chem Phys; 2012 Sep; 14(36):12605-13. PubMed ID: 22796659 [TBL] [Abstract][Full Text] [Related]
34. Novel α-glucosidase from human gut microbiome: substrate specificities and their switch. Tan K; Tesar C; Wilton R; Keigher L; Babnigg G; Joachimiak A FASEB J; 2010 Oct; 24(10):3939-49. PubMed ID: 20581222 [TBL] [Abstract][Full Text] [Related]
35. Synthesis of a biologically active isomer of kotalanol, a naturally occurring glucosidase inhibitor. Eskandari R; Jayakanthan K; Kuntz DA; Rose DR; Pinto BM Bioorg Med Chem; 2010 Apr; 18(8):2829-35. PubMed ID: 20363144 [TBL] [Abstract][Full Text] [Related]
36. Selectivity of 3'-O-methylponkoranol for inhibition of N- and C-terminal maltase glucoamylase and sucrase isomaltase, potential therapeutics for digestive disorders or their sequelae. Eskandari R; Jones K; Rose DR; Pinto BM Bioorg Med Chem Lett; 2011 Nov; 21(21):6491-4. PubMed ID: 21924903 [TBL] [Abstract][Full Text] [Related]
37. Atomistic details of the associative phosphodiester cleavage in human ribonuclease H. Elsässer B; Fels G Phys Chem Chem Phys; 2010 Sep; 12(36):11081-8. PubMed ID: 20672157 [TBL] [Abstract][Full Text] [Related]
38. Characterization of an α-glucosidase, HdAgl, from the digestive fluid of Haliotis discus hannai. Satoh T; Inoue A; Ojima T Comp Biochem Physiol B Biochem Mol Biol; 2013 Sep; 166(1):15-22. PubMed ID: 23774639 [TBL] [Abstract][Full Text] [Related]
39. QM/MM investigation on the catalytic mechanism of Bacteroides thetaiotaomicron α-glucosidase BtGH97a. Wang J; Sheng X; Zhao Y; Liu Y; Liu C Biochim Biophys Acta; 2012 May; 1824(5):750-8. PubMed ID: 22465571 [TBL] [Abstract][Full Text] [Related]
40. Conformational analyses of the reaction coordinate of glycosidases. Davies GJ; Planas A; Rovira C Acc Chem Res; 2012 Feb; 45(2):308-16. PubMed ID: 21923088 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]