BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 29548389)

  • 21. Derivates variation of phenylalanine as a model disinfection by-product precursor during long term chlorination and chloramination.
    Zhou K; Ye S; Yu Q; Chen J; Yong P; Ma X; Li Q; Dietrich AM
    Sci Total Environ; 2021 Jun; 771():144885. PubMed ID: 33736131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination.
    Chu W; Gao N; Yin D; Krasner SW
    J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The formation of disinfection by-products from the chlorination and chloramination of amides.
    Sfynia C; Bond T; Kanda R; Templeton MR
    Chemosphere; 2020 Jun; 248():125940. PubMed ID: 32006828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disinfection byproduct regulatory compliance surrogates and bromide-associated risk.
    Kolb C; Francis RA; VanBriesen JM
    J Environ Sci (China); 2017 Aug; 58():191-207. PubMed ID: 28774609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae.
    Liu C; Ersan MS; Plewa MJ; Amy G; Karanfil T
    Water Res; 2018 Oct; 142():313-324. PubMed ID: 29890479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disinfection byproducts and halogen-specific total organic halogen speciation in chlorinated source waters - The impact of iopamidol and bromide.
    Ackerson NOB; Liberatore HK; Plewa MJ; Richardson SD; Ternes TA; Duirk SE
    J Environ Sci (China); 2020 Mar; 89():90-101. PubMed ID: 31892405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation and control of nitrogenous DBPs from Western Australian source waters: Investigating the impacts of high nitrogen and bromide concentrations.
    Kristiana I; Liew D; Henderson RK; Joll CA; Linge KL
    J Environ Sci (China); 2017 Aug; 58():102-115. PubMed ID: 28774599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study on DBPs formation profiles of intermediate organics from hydroxyl radicals oxidation of microbial cells.
    Ou TY; Wang GS
    Chemosphere; 2016 May; 150():109-115. PubMed ID: 26894677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation and control of C- and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment.
    Qian Y; Chen Y; Hu Y; Hanigan D; Westerhoff P; An D
    Water Res; 2021 Apr; 194():116964. PubMed ID: 33652228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation characteristics of carbonaceous and nitrogenous disinfection by-products depending on residual organic compounds by CGS and DAF.
    Maeng M; Shahi NK; Shin G; Son H; Kwak D; Dockko S
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34008-34017. PubMed ID: 30209770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pre-oxidation of Microcystis aeruginosa-laden water by intensified chlorination: Impact of growth phase on cell degradation and in-situ formation of carbonaceous disinfection by-products.
    Lin JL; Ika AR
    Sci Total Environ; 2022 Jan; 805():150285. PubMed ID: 34537707
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pretreatment strategies for ion exchange to control brominated disinfection byproducts in potable reuse.
    Ersan MS; Dickenson ERV
    Chemosphere; 2022 Jun; 296():134068. PubMed ID: 35202669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of CX
    He J; Shi M; Wang F; Duan Y; Zhao T; Shu S; Chu W
    Water Res; 2020 Oct; 185():116099. PubMed ID: 32739696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of water chemistry on disinfection by-product formation in the complex surface water system.
    Hao R; Zhang Y; Du T; Yang L; Adeleye AS; Li Y
    Chemosphere; 2017 Apr; 172():384-391. PubMed ID: 28088529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulated and unregulated halogenated disinfection byproduct formation from chlorination of saline groundwater.
    Szczuka A; Parker KM; Harvey C; Hayes E; Vengosh A; Mitch WA
    Water Res; 2017 Oct; 122():633-644. PubMed ID: 28646800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction of bromate by zero valent iron (ZVI) enhances formation of brominated disinfection by-products during chlorination.
    Wu Z; Tang Y; Yuan X; Qiang Z
    Chemosphere; 2021 Apr; 268():129340. PubMed ID: 33360939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of iodo-trihalomethanes, iodo-haloacetic acids, and haloacetaldehydes during chlorination and chloramination of iodine containing waters in laboratory controlled reactions.
    Postigo C; Richardson SD; Barceló D
    J Environ Sci (China); 2017 Aug; 58():127-134. PubMed ID: 28774601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water--a case study.
    Bond T; Huang J; Graham NJ; Templeton MR
    Sci Total Environ; 2014 Feb; 470-471():469-79. PubMed ID: 24176694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chlorination of soil-derived dissolved organic matter: Long term nitrogen deposition does not increase terrestrial precursors of toxic disinfection byproducts.
    Li LP; Huang WL; Yang MT; Liu Y; Bowden RD; Simpson MJ; Lajtha K; Tian LQ; Wang JJ
    Water Res; 2020 Oct; 185():116271. PubMed ID: 32784033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of DBPs formation from SMPs exposed to chlorine, chloramine and ozone.
    Zhang B; Xian Q; Lu J; Gong T; Li A; Feng J
    J Water Health; 2017 Apr; 15(2):185-195. PubMed ID: 28362300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.