BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

933 related articles for article (PubMed ID: 29549051)

  • 1. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone.
    Li T; Peng M; Yang Z; Zhou X; Deng Y; Jiang C; Xiao M; Wang J
    Acta Biomater; 2018 Apr; 71():96-107. PubMed ID: 29549051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation.
    Deng Y; Jiang C; Li C; Li T; Peng M; Wang J; Dai K
    Sci Rep; 2017 Jul; 7(1):5588. PubMed ID: 28717129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds.
    Spiller KL; Nassiri S; Witherel CE; Anfang RR; Ng J; Nakazawa KR; Yu T; Vunjak-Novakovic G
    Biomaterials; 2015 Jan; 37():194-207. PubMed ID: 25453950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering.
    Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L
    Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis
    Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W
    Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.
    Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C
    Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The stimulation of osteogenic differentiation of mesenchymal stem cells and vascular endothelial growth factor secretion of endothelial cells by β-CaSiO3/β-Ca3(PO4)2 scaffolds.
    Wang C; Lin K; Chang J; Sun J
    J Biomed Mater Res A; 2014 Jul; 102(7):2096-104. PubMed ID: 23894078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of VEGF loading on scaffold-confined vascularization.
    Lindhorst D; Tavassol F; von See C; Schumann P; Laschke MW; Harder Y; Bormann KH; Essig H; Kokemüller H; Kampmann A; Voss A; Mülhaupt R; Menger MD; Gellrich NC; Rücker M
    J Biomed Mater Res A; 2010 Dec; 95(3):783-92. PubMed ID: 20725981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds.
    Bose S; Tarafder S; Bandyopadhyay A
    Ann Biomed Eng; 2017 Jan; 45(1):261-272. PubMed ID: 27287311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 3D-Printed Ordered Bredigite Scaffold Promotes Pro-Healing of Critical-Sized Bone Defects by Regulating Macrophage Polarization.
    Xuan Y; Li L; Zhang C; Zhang M; Cao J; Zhang Z
    Int J Nanomedicine; 2023; 18():917-932. PubMed ID: 36844434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Vascularized Bone Flaps with Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Arteriovenous Bundle.
    Li B; Ruan C; Ma Y; Huang Z; Huang Z; Zhou G; Zhang J; Wang H; Wu Z; Qiu G
    Tissue Eng Part A; 2018 Sep; 24(17-18):1413-1422. PubMed ID: 29676206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties.
    Li C; Jiang C; Deng Y; Li T; Li N; Peng M; Wang J
    Sci Rep; 2017 Jan; 7():41331. PubMed ID: 28128363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Porous β-Tricalcium Phosphate (β-TCP) Scaffolds with Multiple Channels to Promote Cell Migration, Proliferation, and Angiogenesis.
    Wang X; Lin M; Kang Y
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9223-9232. PubMed ID: 30758175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteopontin sequence modified mesoporous calcium silicate scaffolds to promote angiogenesis in bone tissue regeneration.
    Zhu M; He H; Meng Q; Zhu Y; Ye X; Xu N; Yu J
    J Mater Chem B; 2020 Jul; 8(27):5849-5861. PubMed ID: 32530014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Establishment and biological effect evaluation of prevascularized porous β-tricalcium phosphate tissue engineered bone].
    Huang M; Fan J; Ma Z; Li J; Lu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 May; 36(5):625-632. PubMed ID: 35570639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture.
    Kuss MA; Wu S; Wang Y; Untrauer JB; Li W; Lim JY; Duan B
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1788-1798. PubMed ID: 28901689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.
    Wang C; Lin K; Chang J; Sun J
    Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IFN-γ/SrBG composite scaffolds promote osteogenesis by sequential regulation of macrophages from M1 to M2.
    Luo M; Zhao F; Liu L; Yang Z; Tian T; Chen X; Cao X; Chen D; Chen X
    J Mater Chem B; 2021 Feb; 9(7):1867-1876. PubMed ID: 33533360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.