These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29549341)

  • 1. Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes.
    Yanagi K; Okada R; Ichinose Y; Yomogida Y; Katsutani F; Gao W; Kono J
    Nat Commun; 2018 Mar; 9(1):1121. PubMed ID: 29549341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon.
    Wang S; Wu F; Zhao S; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2019 Apr; 19(4):2360-2365. PubMed ID: 30908062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-electron linear intersubband light absorption in a biased quantum well.
    Dai J; Raikh ME; Shahbazyan TV
    Phys Rev Lett; 2006 Feb; 96(6):066803. PubMed ID: 16606029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear Luttinger liquid plasmons in semiconducting single-walled carbon nanotubes.
    Wang S; Zhao S; Shi Z; Wu F; Zhao Z; Jiang L; Watanabe K; Taniguchi T; Zettl A; Zhou C; Wang F
    Nat Mater; 2020 Sep; 19(9):986-991. PubMed ID: 32231241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Plasmons in Laterally Confined 2D Electron Systems.
    Zagorodnev IV; Zabolotnykh AA; Rodionov DA; Volkov VA
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared Light-Emitting Devices from Antenna-Coupled Luttinger Liquid Plasmons In Carbon Nanotubes.
    Yoo S; Zhao S; Wang F
    Phys Rev Lett; 2021 Dec; 127(25):257702. PubMed ID: 35029454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intersubband Relaxation in CdSe Colloidal Quantum Wells.
    Diroll BT; Schaller RD
    ACS Nano; 2020 Sep; 14(9):12082-12090. PubMed ID: 32864955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic properties of metallic nanoparticles: the effects of size quantization.
    Townsend E; Bryant GW
    Nano Lett; 2012 Jan; 12(1):429-34. PubMed ID: 22181554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gate-tunable plasmons in mixed-dimensional van der Waals heterostructures.
    Wang S; Yoo S; Zhao S; Zhao W; Kahn S; Cui D; Wu F; Jiang L; Utama MIB; Li H; Li S; Zibrov A; Regan E; Wang D; Zhang Z; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nat Commun; 2021 Aug; 12(1):5039. PubMed ID: 34413291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong and Broadly Tunable Plasmon Resonances in Thick Films of Aligned Carbon Nanotubes.
    Chiu KC; Falk AL; Ho PH; Farmer DB; Tulevski G; Lee YH; Avouris P; Han SJ
    Nano Lett; 2017 Sep; 17(9):5641-5645. PubMed ID: 28763225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallic Carbon Nanotube Nanocavities as Ultracompact and Low-loss Fabry-Perot Plasmonic Resonators.
    Wang S; Wu F; Watanabe K; Taniguchi T; Zhou C; Wang F
    Nano Lett; 2020 Apr; 20(4):2695-2702. PubMed ID: 32134275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning localized transverse surface plasmon resonance in electricity-selected single-wall carbon nanotubes by electrochemical doping.
    Igarashi T; Kawai H; Yanagi K; Cuong NT; Okada S; Pichler T
    Phys Rev Lett; 2015 May; 114(17):176807. PubMed ID: 25978253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Visualization of Ultrastrong Coupling between Luttinger-Liquid Plasmons and Phonon Polaritons.
    Németh G; Otsuka K; Datz D; Pekker Á; Maruyama S; Borondics F; Kamarás K
    Nano Lett; 2022 Apr; 22(8):3495-3502. PubMed ID: 35315666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum interference in plasmonic circuits.
    Heeres RW; Kouwenhoven LP; Zwiller V
    Nat Nanotechnol; 2013 Oct; 8(10):719-22. PubMed ID: 23934097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-in-a-Box: On the Physical Nature of Few-Carrier Plasmon Resonances.
    Jain PK
    J Phys Chem Lett; 2014 Sep; 5(18):3112-9. PubMed ID: 26276321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical nano-imaging of gate-tunable graphene plasmons.
    Chen J; Badioli M; Alonso-González P; Thongrattanasiri S; Huth F; Osmond J; Spasenović M; Centeno A; Pesquera A; Godignon P; Elorza AZ; Camara N; García de Abajo FJ; Hillenbrand R; Koppens FH
    Nature; 2012 Jul; 487(7405):77-81. PubMed ID: 22722861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intersubband edge singularity in metallic nanotubes.
    Mishchenko EG; Starykh OA
    Phys Rev Lett; 2011 Sep; 107(11):116804. PubMed ID: 22026693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes.
    Zhang Q; Hároz EH; Jin Z; Ren L; Wang X; Arvidson RS; Lüttge A; Kono J
    Nano Lett; 2013; 13(12):5991-6. PubMed ID: 24224898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum plasmons and intraband excitons in doped nanoparticles: Insights from quantum chemistry.
    Lau BTG; Berkelbach TC
    J Chem Phys; 2020 Jun; 152(22):224704. PubMed ID: 32534544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.