BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29549359)

  • 1. The role of dipole interactions in hyperthermia heating colloidal clusters of densely-packed superparamagnetic nanoparticles.
    Fu R; Yan Y; Roberts C; Liu Z; Chen Y
    Sci Rep; 2018 Mar; 8(1):4704. PubMed ID: 29549359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Dipole Interactions on Blocking Temperature and Relaxation Dynamics of Superparamagnetic Iron-Oxide (Fe
    Sadat ME; Bud'ko SL; Ewing RC; Xu H; Pauletti GM; Mast DB; Shi D
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly magnetizable superparamagnetic colloidal aggregates with narrowed size distribution from ferrofluid emulsion.
    Lobaz V; Klupp Taylor RN; Peukert W
    J Colloid Interface Sci; 2012 May; 374(1):102-10. PubMed ID: 22365838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of monodispersed water dispersible Fe
    Sharma KS; Ningthoujam RS; Dubey AK; Chattopadhyay A; Phapale S; Juluri RR; Mukherjee S; Tewari R; Shetake NG; Pandey BN; Vatsa RK
    Sci Rep; 2018 Oct; 8(1):14766. PubMed ID: 30283083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe(2)O(3) nanoparticles.
    Lévy M; Wilhelm C; Siaugue JM; Horner O; Bacri JC; Gazeau F
    J Phys Condens Matter; 2008 May; 20(20):204133. PubMed ID: 21694262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of biopolymer encapsulated Eu doped Fe
    Hazarika KP; Borah JP
    Sci Rep; 2024 Apr; 14(1):9768. PubMed ID: 38684710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant-driven optimization of iron-based nanoparticle synthesis: a study on magnetic hyperthermia and endothelial cell uptake.
    Riahi K; Dirba I; Ablets Y; Filatova A; Sultana SN; Adabifiroozjaei E; Molina-Luna L; Nuber UA; Gutfleisch O
    Nanoscale Adv; 2023 Oct; 5(21):5859-5869. PubMed ID: 37881718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-Micrometer Magnetic Nanocomposites: Insights into the Effect of Magnetic Nanoparticles Interactions on the Optimization of SAR and MRI Performance.
    Grillo R; Gallo J; Stroppa DG; Carbó-Argibay E; Lima R; Fraceto LF; Bañobre-López M
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25777-25787. PubMed ID: 27595772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous and heterogeneous binary colloidal clusters formed by evaporation-induced self-assembly inside droplets.
    Cho YS; Yi GR; Kim SH; Elsesser MT; Breed DR; Yang SM
    J Colloid Interface Sci; 2008 Feb; 318(1):124-33. PubMed ID: 17976635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of diblock copolymer functionalized spherical nanoparticles as a function of copolymer composition.
    Estridge CE; Jayaraman A
    J Chem Phys; 2014 Apr; 140(14):144905. PubMed ID: 24735316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced heat property of polyethyleneglycol-coated iron oxide nanoparticles with dispersion stability for hyperthermia.
    Jang DH; Lee YI; Kim KS; Park ES; Kang SC; Yoon TJ; Choa YH
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6098-102. PubMed ID: 24205608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer-encapsulation of iron oxide clusters using macroRAFT block copolymers as stabilizers: tuning of the particle morphology and surface functionalization.
    Guimarães TR; Lansalot M; Bourgeat-Lami E
    J Mater Chem B; 2020 Jun; 8(22):4917-4929. PubMed ID: 32343297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dipolar interactions among magnetite nanoparticles for magnetic hyperthermia: a rate-equation approach.
    Barrera G; Allia P; Tiberto P
    Nanoscale; 2021 Feb; 13(7):4103-4121. PubMed ID: 33570053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the magnetic and inductive heating properties of Fe
    Mohapatra J; Xing M; Beatty J; Elkins J; Seda T; Mishra SR; Liu JP
    Nanotechnology; 2020 Apr; 31(27):275706. PubMed ID: 32224519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High performance magnetorheological fluids: very high magnetization FeCo-Fe
    Craciunescu I; Chiţanu E; Codescu MM; Iacob N; Kuncser A; Kuncser V; Socoliuc V; Susan-Resiga D; Bălănean F; Ispas G; Borbáth T; Borbáth I; Turcu R; Vékás L
    Soft Matter; 2022 Jan; 18(3):626-639. PubMed ID: 34931628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia.
    Obaidat IM; Issa B; Haik Y
    Nanomaterials (Basel); 2015 Jan; 5(1):63-89. PubMed ID: 28347000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arrangement at the nanoscale: Effect on magnetic particle hyperthermia.
    Myrovali E; Maniotis N; Makridis A; Terzopoulou A; Ntomprougkidis V; Simeonidis K; Sakellari D; Kalogirou O; Samaras T; Salikhov R; Spasova M; Farle M; Wiedwald U; Angelakeris M
    Sci Rep; 2016 Nov; 6():37934. PubMed ID: 27897195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.