BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29549419)

  • 21. The embryotoxicity of ZnO nanoparticles to marine medaka, Oryzias melastigma.
    Cong Y; Jin F; Wang J; Mu J
    Aquat Toxicol; 2017 Apr; 185():11-18. PubMed ID: 28157544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems.
    Kwak JI; Cui R; Nam SH; Kim SW; Chae Y; An YJ
    Nanotoxicology; 2016; 10(5):521-30. PubMed ID: 26634622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applications of dynamic models in predicting the bioaccumulation, transport and toxicity of trace metals in aquatic organisms.
    Wang WX; Tan QG
    Environ Pollut; 2019 Sep; 252(Pt B):1561-1573. PubMed ID: 31277025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.
    Perreault F; Oukarroum A; Melegari SP; Matias WG; Popovic R
    Chemosphere; 2012 Jun; 87(11):1388-94. PubMed ID: 22445953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment.
    Balmuri SR; Selvaraj U; Kumar VV; Anthony SP; Tsatsakis AM; Golokhvast KS; Raman T
    Environ Res; 2017 Jan; 152():141-149. PubMed ID: 27771568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissolution and bandgap paradigms for predicting the toxicity of metal oxide nanoparticles in the marine environment: an in vivo study with oyster embryos.
    Noventa S; Hacker C; Rowe D; Elgy C; Galloway T
    Nanotoxicology; 2018 Feb; 12(1):63-78. PubMed ID: 29262761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ecotoxicity of engineered TiO2 nanoparticles to saltwater organisms: an overview.
    Minetto D; Libralato G; Volpi Ghirardini A
    Environ Int; 2014 May; 66():18-27. PubMed ID: 24509165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of metal oxide nanoparticles on soil properties.
    Ben-Moshe T; Frenk S; Dror I; Minz D; Berkowitz B
    Chemosphere; 2013 Jan; 90(2):640-6. PubMed ID: 23040650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term effect of metal oxide nanoparticles on activated sludge.
    Sundaram B; Kumar A
    Water Sci Technol; 2017 Jan; 75(2):462-473. PubMed ID: 28112673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge.
    Thwala M; Klaine SJ; Musee N
    Environ Toxicol Chem; 2016 Jul; 35(7):1677-94. PubMed ID: 26757140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives.
    Chae Y; An YJ
    Mar Pollut Bull; 2017 Nov; 124(2):624-632. PubMed ID: 28222864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium.
    Li K; Chen Y; Zhang W; Pu Z; Jiang L; Chen Y
    Chem Res Toxicol; 2012 Aug; 25(8):1675-81. PubMed ID: 22693953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Are nanosized or dissolved metals more toxic in the environment? A meta-analysis.
    Notter DA; Mitrano DM; Nowack B
    Environ Toxicol Chem; 2014 Dec; 33(12):2733-9. PubMed ID: 25158308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution and bioavailability of ceria nanoparticles in an aquatic ecosystem model.
    Zhang P; He X; Ma Y; Lu K; Zhao Y; Zhang Z
    Chemosphere; 2012 Oct; 89(5):530-5. PubMed ID: 22694776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fungi from metal-polluted streams may have high ability to cope with the oxidative stress induced by copper oxide nanoparticles.
    Pradhan A; Seena S; Schlosser D; Gerth K; Helm S; Dobritzsch M; Krauss GJ; Dobritzsch D; Pascoal C; Cássio F
    Environ Toxicol Chem; 2015 Apr; 34(4):923-30. PubMed ID: 25565283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The joint effects on Photobacterium phosphoreum of metal oxide nanoparticles and their most likely coexisting chemicals in the environment.
    Wang D; Gao Y; Lin Z; Yao Z; Zhang W
    Aquat Toxicol; 2014 Sep; 154():200-6. PubMed ID: 24911590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytotoxicity of CeO
    Sendra M; Volland M; Balbi T; Fabbri R; Yeste MP; Gatica JM; Canesi L; Blasco J
    Aquat Toxicol; 2018 Jul; 200():13-20. PubMed ID: 29704629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silver nanoparticles in the environment: Sources, detection and ecotoxicology.
    McGillicuddy E; Murray I; Kavanagh S; Morrison L; Fogarty A; Cormican M; Dockery P; Prendergast M; Rowan N; Morris D
    Sci Total Environ; 2017 Jan; 575():231-246. PubMed ID: 27744152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hazard assessment of nickel nanoparticles in soil-The use of a full life cycle test with Enchytraeus crypticus.
    Santos FCF; Gomes SIL; Scott-Fordsmand JJ; Amorim MJB
    Environ Toxicol Chem; 2017 Nov; 36(11):2934-2941. PubMed ID: 28488336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of soil type and environmental conditions on ZnO, TiO(2) and Ni nanoparticles phytotoxicity.
    Jośko I; Oleszczuk P
    Chemosphere; 2013 Jun; 92(1):91-9. PubMed ID: 23541360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.