BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29549419)

  • 41. Toxicity of copper oxide nanoparticles to Neotropical species Ceriodaphnia silvestrii and Hyphessobrycon eques.
    Mansano AS; Souza JP; Cancino-Bernardi J; Venturini FP; Marangoni VS; Zucolotto V
    Environ Pollut; 2018 Dec; 243(Pt A):723-733. PubMed ID: 30228063
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sorption, dissolution and pH determine the long-term equilibration and toxicity of coated and uncoated ZnO nanoparticles in soil.
    Waalewijn-Kool PL; Diez Ortiz M; van Straalen NM; van Gestel CA
    Environ Pollut; 2013 Jul; 178():59-64. PubMed ID: 23542444
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Silver nanoparticles: behaviour and effects in the aquatic environment.
    Fabrega J; Luoma SN; Tyler CR; Galloway TS; Lead JR
    Environ Int; 2011 Feb; 37(2):517-31. PubMed ID: 21159383
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of Nano-Al₂O₃ on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus.
    Li X; Zhou S; Fan W
    Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27294942
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Behavioural effects on marine amphipods exposed to silver ions and silver nanoparticles.
    Vannuci-Silva M; Kohler S; Umbuzeiro GA; Ford AT
    Environ Pollut; 2019 Sep; 252(Pt B):1051-1058. PubMed ID: 31252102
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles.
    Poirier I; Kuhn L; Demortière A; Mirvaux B; Hammann P; Chicher J; Caplat C; Pallud M; Bertrand M
    J Proteomics; 2016 Oct; 148():213-27. PubMed ID: 27523480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus.
    Baek YW; An YJ
    Sci Total Environ; 2011 Mar; 409(8):1603-8. PubMed ID: 21310463
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms.
    Freixa A; Acuña V; Sanchís J; Farré M; Barceló D; Sabater S
    Sci Total Environ; 2018 Apr; 619-620():328-337. PubMed ID: 29154051
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanoscale copper in the soil-plant system - toxicity and underlying potential mechanisms.
    Anjum NA; Adam V; Kizek R; Duarte AC; Pereira E; Iqbal M; Lukatkin AS; Ahmad I
    Environ Res; 2015 Apr; 138():306-25. PubMed ID: 25749126
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO₂) to earthworms (Eisenia fetida).
    Cañas JE; Qi B; Li S; Maul JD; Cox SB; Das S; Green MJ
    J Environ Monit; 2011 Dec; 13(12):3351-7. PubMed ID: 22020256
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxidative stress in aquatic ecosystems: Selected papers from the Second International Conference.
    Joyner-Matos J; Abele D; Medina JPV; Zenteno-Savín T
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Oct; 200():1-2. PubMed ID: 27302891
    [No Abstract]   [Full Text] [Related]  

  • 53. Particles in the oceans: Implication for a safe marine environment.
    Blasco J; Corsi I; Matranga V
    Mar Environ Res; 2015 Oct; 111():1-4. PubMed ID: 26515473
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses.
    Gambardella C; Mesarič T; Milivojević T; Sepčić K; Gallus L; Carbone S; Ferrando S; Faimali M
    Environ Monit Assess; 2014 Jul; 186(7):4249-59. PubMed ID: 24590232
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects.
    Du W; Tan W; Peralta-Videa JR; Gardea-Torresdey JL; Ji R; Yin Y; Guo H
    Plant Physiol Biochem; 2017 Jan; 110():210-225. PubMed ID: 27137632
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Environmental behavior and eco-toxicity of xylene in aquatic environments: A review.
    Duan W; Meng F; Wang F; Liu Q
    Ecotoxicol Environ Saf; 2017 Nov; 145():324-332. PubMed ID: 28756253
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microalgal ecotoxicity of nanoparticles: An updated review.
    Nguyen MK; Moon JY; Lee YC
    Ecotoxicol Environ Saf; 2020 Sep; 201():110781. PubMed ID: 32497816
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Liang Q; Qian T; Zhao D
    Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Summary and analysis of the currently existing literature data on metal-based nanoparticles published for selected aquatic organisms: Applicability for toxicity prediction by (Q)SARs.
    Chen G; Vijver MG; Peijnenburg WJ
    Altern Lab Anim; 2015 Sep; 43(4):221-40. PubMed ID: 26375887
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles.
    Mwaanga P; Carraway ER; van den Hurk P
    Aquat Toxicol; 2014 May; 150():201-9. PubMed ID: 24699179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.