These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 29549520)

  • 21. Primary closure of median sternotomy: a survey of all German surgical heart centers and a review of the literature concerning sternal closure technique.
    Schimmer C; Reents W; Elert O
    Thorac Cardiovasc Surg; 2006 Sep; 54(6):408-13. PubMed ID: 16967378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sternal preservation: a better way to treat most sternal wound complications after cardiac surgery.
    Douville EC; Asaph JW; Dworkin RJ; Handy JR; Canepa CS; Grunkemeier GL; Wu Y
    Ann Thorac Surg; 2004 Nov; 78(5):1659-64. PubMed ID: 15511452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sternal semi-closure using a bioresorbable osteosynthesis device: a new method for delayed sternal closure.
    Tanaka Y; Miyamoto T; Naito Y; Yoshitake S; Sasahara A; Miyaji K
    Surg Today; 2018 Aug; 48(8):748-755. PubMed ID: 29549520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delayed sternal closure after neonatal cardiac operations.
    Hakimi M; Walters HL; Pinsky WW; Gallagher MJ; Lyons JM
    J Thorac Cardiovasc Surg; 1994 Mar; 107(3):925-33. PubMed ID: 8127124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Liberal Use of Delayed Sternal Closure in Children Is Not Associated With Increased Morbidity.
    Kumar SR; Scott N; Wells WJ; Starnes VA
    Ann Thorac Surg; 2018 Aug; 106(2):581-586. PubMed ID: 29698662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiologic effects of delayed sternal closure following stage 1 palliation.
    Mills KI; van den Bosch SJ; Gauvreau K; Allan CK; Thiagarajan RR; Hoganson DM; Baird CW; Nathan M; DiNardo JA; Kheir JN
    Cardiol Young; 2018 Dec; 28(12):1393-1403. PubMed ID: 30152302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Delayed sternal closure after open heart surgery in neonates and early infants].
    Inoue M; Sano S; Kino K; Kawada M; Irie H; Sugawara E; Aoki A
    Kyobu Geka; 2000 Aug; 53(9):729-33. PubMed ID: 10935396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simple and Useful Method to Minimize Tracheal Compression Resulting From Concave Sternum During Congenital Heart Surgery.
    Tanaka Y; Miyamoto T; Yoshitake S; Naito Y
    Ann Thorac Surg; 2015 Nov; 100(5):1901-3. PubMed ID: 26522539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A rigid and bioabsorbable material for anterior chest wall reconstruction in a canine model.
    Hamaji M; Kojima F; Koyasu S; Nobashi T; Tsuruyama T; Date H; Nakamura T
    Interact Cardiovasc Thorac Surg; 2015 Mar; 20(3):322-8. PubMed ID: 25505306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Risk factors for surgical site infection in pediatric cardiac surgery patients undergoing delayed sternal closure.
    Harder EE; Gaies MG; Yu S; Donohue JE; Hanauer DA; Goldberg CS; Hirsch JC
    J Thorac Cardiovasc Surg; 2013 Aug; 146(2):326-33. PubMed ID: 23102685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Delayed sternal closure after pediatric cardiac operations; single center experience: a retrospective study.
    Özker E; Saritaş B; Vuran C; Yörüker U; Ulugöl H; Türköz R
    J Cardiothorac Surg; 2012 Oct; 7():102. PubMed ID: 23031425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of delayed sternal closure on postoperative infection or wound dehiscence in patients with congenital heart disease.
    Shin HJ; Jhang WK; Park JJ; Yun TJ
    Ann Thorac Surg; 2011 Aug; 92(2):705-9. PubMed ID: 21801923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Right ventricular outflow tract reconstruction with bicuspid valved polytetrafluoroethylene conduit.
    Yoshida M; Wearden PD; Dur O; Pekkan K; Morell VO
    Ann Thorac Surg; 2011 Apr; 91(4):1235-8; discussion 1239. PubMed ID: 21440151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cerebral and somatic oxygen saturation decrease after delayed sternal closure in children after cardiac surgery.
    Horvath R; Shore S; Schultz SE; Rosenkranz ER; Cousins M; Ricci M
    J Thorac Cardiovasc Surg; 2010 Apr; 139(4):894-900. PubMed ID: 19660343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Usefulness of osteosynthesis device made of hydroxyapatite-poly-L-lactide composites in port-access cardiac surgery.
    Ito T; Kudo M; Yozu R
    Ann Thorac Surg; 2008 Dec; 86(6):1905-8. PubMed ID: 19022006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expanded polytetrafluoroethylene valved conduit and patch with bulging sinuses in right ventricular outflow tract reconstruction.
    Miyazaki T; Yamagishi M; Nakashima A; Fukae K; Nakano T; Yaku H; Kado H
    J Thorac Cardiovasc Surg; 2007 Aug; 134(2):327-32. PubMed ID: 17662769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The complete process of bioresorption and bone replacement using devices made of forged composites of raw hydroxyapatite particles/poly l-lactide (F-u-HA/PLLA).
    Shikinami Y; Matsusue Y; Nakamura T
    Biomaterials; 2005 Sep; 26(27):5542-51. PubMed ID: 15860210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fan-shaped expanded polytetrafluoroethylene valve in the pulmonary position.
    Yamagishi M; Kurosawa H; Nomura K; Kitamura N
    J Cardiovasc Surg (Torino); 2002 Dec; 43(6):779-86. PubMed ID: 12483166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly L-lactide (PLLA). Part II: practical properties of miniscrews and miniplates.
    Shikinami Y; Okuno M
    Biomaterials; 2001 Dec; 22(23):3197-211. PubMed ID: 11603592
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.