These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2954954)

  • 1. Changes in the ATPase activity of insect fibrillar flight muscle during calcium and strain activation probed by phosphate-water oxygen exchange.
    Lund J; Webb MR; White DC
    J Biol Chem; 1987 Jun; 262(18):8584-90. PubMed ID: 2954954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the ATPase activity of insect fibrillar flight muscle during sinusoidal length oscillation probed by phosphate-water oxygen exchange.
    Lund J; Webb MR; White DC
    J Biol Chem; 1988 Apr; 263(12):5505-11. PubMed ID: 2965703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-bridge kinetics in asynchronous insect flight muscle.
    White DC; Lund J; Webb MR
    Adv Exp Med Biol; 1988; 226():169-79. PubMed ID: 2970205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of ATP release and Pi binding during the ATPase cycle of lethocerus flight muscle fibres, using phosphate-water oxygen exchange.
    Webb MR; Lund J; Hunter JL; White DC
    J Muscle Res Cell Motil; 1991 Jun; 12(3):254-61. PubMed ID: 1831462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen exchange between phosphate and water accompanies calcium-regulated ATPase activity of skinned fibers from rabbit skeletal muscle.
    Hibberd MG; Webb MR; Goldman YE; Trentham DR
    J Biol Chem; 1985 Mar; 260(6):3496-500. PubMed ID: 3156135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen exchange between Pi in the medium and water during ATP hydrolysis mediated by skinned fibers from rabbit skeletal muscle. Evidence for Pi binding to a force-generating state.
    Webb MR; Hibberd MG; Goldman YE; Trentham DR
    J Biol Chem; 1986 Nov; 261(33):15557-64. PubMed ID: 2946675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the ATPase mechanism of myosin subfragment 1 from insect fibrillar flight muscle in the presence and absence of actin, using phosphate-water oxygen exchange measurements.
    White DC; Ricigliano JW; Webb MR
    J Muscle Res Cell Motil; 1987 Dec; 8(6):537-40. PubMed ID: 2965161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inorganic phosphate affects the pCa-force relationship more than the pCa-ATPase by increasing the rate of dissociation of force generating cross-bridges in skinned fibers from both EDL and soleus muscles of the rat.
    Kerrick WG; Xu Y
    J Muscle Res Cell Motil; 2004; 25(2):107-17. PubMed ID: 15360126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the actomyosin ATPase in muscle fibers.
    Goldman YE
    Annu Rev Physiol; 1987; 49():637-54. PubMed ID: 2952053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction by nucleotide triphosphate hydrolysis of a form of sarcoplasmic reticulum ATPase capable of medium phosphate-oxygen exchange in presence of calcium.
    de Meis L; Boyer PD
    J Biol Chem; 1978 Mar; 253(5):1556-9. PubMed ID: 146715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical transients initiated by photolysis of caged ATP within fibers of insect fibrillar flight muscle.
    Yamakawa M; Goldman YE
    J Gen Physiol; 1991 Oct; 98(4):657-79. PubMed ID: 1960528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle force and stiffness during activation and relaxation. Implications for the actomyosin ATPase.
    Brozovich FV; Yates LD; Gordon AM
    J Gen Physiol; 1988 Mar; 91(3):399-420. PubMed ID: 2967885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay.
    He ZH; Chillingworth RK; Brune M; Corrie JE; Trentham DR; Webb MR; Ferenczi MA
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):125-48. PubMed ID: 9174999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of ATP and inorganic phosphate release during hydrolysis of ATP by rabbit skeletal actomyosin subfragment 1. Oxygen exchange between water and ATP or phosphate.
    Bowater R; Zimmerman RW; Webb MR
    J Biol Chem; 1990 Jan; 265(1):171-6. PubMed ID: 2136736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of medium inorganic phosphate-water exchange catalyzed by sarcoplasmic reticulum vesicles.
    Ariki M; Boyer PD
    Biochemistry; 1980 Apr; 19(9):2001-4. PubMed ID: 6445751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Ca2+ on the kinetics of phosphate release in skeletal muscle.
    Walker JW; Lu Z; Moss RL
    J Biol Chem; 1992 Feb; 267(4):2459-66. PubMed ID: 1733945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics.
    Iwamoto H
    Biophys J; 1995 Sep; 69(3):1022-35. PubMed ID: 8519957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+ dependence of tension and ADP production in segments of chemically skinned muscle fibers.
    Levy RM; Umazume Y; Kushmerick MJ
    Biochim Biophys Acta; 1976 May; 430(2):352-65. PubMed ID: 132189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of phosphate and pH on myofibrillar ATPase activity and force in skinned cardiac trabeculae from rat.
    Ebus JP; Stienen GJ; Elzinga G
    J Physiol; 1994 May; 476(3):501-16. PubMed ID: 8057257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chemo-mechanical coupling relation in the oscillatory contraction-relaxation cycles of insect fibrillar muscle.
    Chaplain RA; Frommelt B; Honka B
    J Mechanochem Cell Motil; 1976; 3(4):253-64. PubMed ID: 140202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.