BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29549642)

  • 1. Computer-Aided Antibody Design: An Overview.
    Choong YS; Lee YV; Soong JX; Law CT; Lim YY
    Adv Exp Med Biol; 2017; 1053():221-243. PubMed ID: 29549642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IsAb: a computational protocol for antibody design.
    Liang T; Chen H; Yuan J; Jiang C; Hao Y; Wang Y; Feng Z; Xie XQ
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational approaches to therapeutic antibody design: established methods and emerging trends.
    Norman RA; Ambrosetti F; Bonvin AMJJ; Colwell LJ; Kelm S; Kumar S; Krawczyk K
    Brief Bioinform; 2020 Sep; 21(5):1549-1567. PubMed ID: 31626279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-Guided Design of Antibodies.
    Caravella JA; Wang D; Glaser SM; Lugovskoy A
    Curr Comput Aided Drug Des; 2010; 6(2):128-38. PubMed ID: 26845329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing stability of antibody via antibody engineering: stability engineering on an anti-hVEGF.
    Wang S; Liu M; Zeng D; Qiu W; Ma P; Yu Y; Chang H; Sun Z
    Proteins; 2014 Oct; 82(10):2620-30. PubMed ID: 24916692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational design of antibodies.
    Fischman S; Ofran Y
    Curr Opin Struct Biol; 2018 Aug; 51():156-162. PubMed ID: 29791878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of potent mimic peptide derived from monoclonal antibody: antibody mimic design.
    Feng J; Li Y; Zhang W; Shen B
    Immunol Lett; 2005 May; 98(2):311-6. PubMed ID: 15860233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the potential of global protein-protein docking: an overview and critical assessment of current programs for automatic ab initio docking.
    Huang SY
    Drug Discov Today; 2015 Aug; 20(8):969-77. PubMed ID: 25801181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing properties of antireceptor antibodies using kinetic computational models and experiments.
    Harms BD; Kearns JD; Su SV; Kohli N; Nielsen UB; Schoeberl B
    Methods Enzymol; 2012; 502():67-87. PubMed ID: 22208982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of interleukin 23 and 7G10 interactions for computational design of lead antibodies against immune-mediated inflammatory diseases.
    Saba Khan N; Verma R; Pradhan D; Nayek A; Bhuyan R; Kumar Sahu T; Kumar Jain A
    J Recept Signal Transduct Res; 2018 Aug; 38(4):327-334. PubMed ID: 30481093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing binding mechanism of interleukin-6 and olokizumab: in silico design of potential lead antibodies for autoimmune and inflammatory diseases.
    Verma R; Yadav M; Pradhan D; Bhuyan R; Aggarwal S; Nayek A; Jain AK
    J Recept Signal Transduct Res; 2016 Dec; 36(6):601-616. PubMed ID: 26982101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward rational antibody design: recent advancements in molecular dynamics simulations.
    Yamashita T
    Int Immunol; 2018 Apr; 30(4):133-140. PubMed ID: 29346652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Computational Techniques in Antibody Fc-Fused Molecule Design for Therapeutics.
    Ng CL; Lim TS; Choong YS
    Mol Biotechnol; 2024 Apr; 66(4):568-581. PubMed ID: 37742298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The coming of age of engineered multivalent antibodies.
    Nuñez-Prado N; Compte M; Harwood S; Álvarez-Méndez A; Lykkemark S; Sanz L; Álvarez-Vallina L
    Drug Discov Today; 2015 May; 20(5):588-94. PubMed ID: 25757598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-Aided Drug Design Methods.
    Yu W; MacKerell AD
    Methods Mol Biol; 2017; 1520():85-106. PubMed ID: 27873247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational investigation of inhibitory mechanism of flavonoids as bovine serum albumin anti-glycation agents.
    Johari A; Moosavi-Movahedi AA; Amanlou M
    Daru; 2014 Dec; 22(1):79. PubMed ID: 25498599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimentally guided computational antibody affinity maturation with de novo docking, modelling and rational design.
    Cannon DA; Shan L; Du Q; Shirinian L; Rickert KW; Rosenthal KL; Korade M; van Vlerken-Ysla LE; Buchanan A; Vaughan TJ; Damschroder MM; Popovic B
    PLoS Comput Biol; 2019 May; 15(5):e1006980. PubMed ID: 31042706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Monoclonal antibodies, act two: new molecules for new challenges].
    Dutertre CA; Teillaud JL
    J Soc Biol; 2006; 200(4):377-86. PubMed ID: 17652973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design.
    Clark LA; Boriack-Sjodin PA; Eldredge J; Fitch C; Friedman B; Hanf KJ; Jarpe M; Liparoto SF; Li Y; Lugovskoy A; Miller S; Rushe M; Sherman W; Simon K; Van Vlijmen H
    Protein Sci; 2006 May; 15(5):949-60. PubMed ID: 16597831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.