These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 29549832)

  • 1. Co-culture-based biological carbon monoxide conversion by Citrobacter amalonaticus Y19 and Sporomusa ovata via a reducing-equivalent transfer mediator.
    Lee CR; Kim C; Song YE; Im H; Oh YK; Park S; Kim JR
    Bioresour Technol; 2018 Jul; 259():128-135. PubMed ID: 29549832
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Ainala SK; Seol E; Kim JR; Park S
    Biotechnol Biofuels; 2017; 10():80. PubMed ID: 28360938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete genome sequence of novel carbon monoxide oxidizing bacteria Citrobacter amalonaticus Y19, assembled de novo.
    Ainala SK; Seol E; Park S
    J Biotechnol; 2015 Oct; 211():79-80. PubMed ID: 26210290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycerol assimilation and production of 1,3-propanediol by Citrobacter amalonaticus Y19.
    Ainala SK; Ashok S; Ko Y; Park S
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):5001-11. PubMed ID: 23377788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Denitrification by Pseudomonas stutzeri coupled with CO2 reduction by Sporomusa ovata with hydrogen as an electron donor assisted by solid-phase humin.
    Xiao Z; Awata T; Zhang D; Katayama A
    J Biosci Bioeng; 2016 Sep; 122(3):307-13. PubMed ID: 26975755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide.
    Aryal N; Tremblay PL; Lizak DM; Zhang T
    Bioresour Technol; 2017 Jun; 233():184-190. PubMed ID: 28279911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon and energy balances of glucose fermentation with hydrogenproducing bacterium Citrobacter amalonaticus Y19.
    Oh YK; Park S; Seol EH; Kim SH; Kim MS; Hwang JW; Ryu DD
    J Microbiol Biotechnol; 2008 Mar; 18(3):532-8. PubMed ID: 18388473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata.
    Ammam F; Tremblay PL; Lizak DM; Zhang T
    Biotechnol Biofuels; 2016; 9():163. PubMed ID: 27493685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fixation of CO
    Amulya K; Mohan SV
    Sci Total Environ; 2019 Dec; 695():133838. PubMed ID: 31756859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator.
    Im CH; Kim C; Song YE; Oh SE; Jeon BH; Kim JR
    Chemosphere; 2018 Jan; 191():166-173. PubMed ID: 29032261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata.
    Bajracharya S; Krige A; Matsakas L; Rova U; Christakopoulos P
    Chemosphere; 2022 Jan; 287(Pt 3):132188. PubMed ID: 34543900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals.
    Cha S; Lim HG; Kwon S; Kim DH; Kang CW; Jung GY
    Metab Eng; 2021 Mar; 64():146-153. PubMed ID: 33571657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic tools for the electrotroph
    Tremblay P-L; Zhang T
    Appl Environ Microbiol; 2024 Jan; 90(1):e0175723. PubMed ID: 38117058
    [No Abstract]   [Full Text] [Related]  

  • 14. Unravelling the one-carbon metabolism of the acetogen Sporomusa strain An4 by genome and proteome analysis.
    Visser M; Pieterse MM; Pinkse MW; Nijsse B; Verhaert PD; de Vos WM; Schaap PJ; Stams AJ
    Environ Microbiol; 2016 Sep; 18(9):2843-55. PubMed ID: 26147498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth inhibition of Sporomusa ovata by incorporation of benzimidazole bases into cobamides.
    Mok KC; Taga ME
    J Bacteriol; 2013 May; 195(9):1902-11. PubMed ID: 23417488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective conversion of carbon monoxide to hydrogen by anaerobic mixed culture.
    Liu Y; Wan J; Han S; Zhang S; Luo G
    Bioresour Technol; 2016 Feb; 202():1-7. PubMed ID: 26692523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Adaptive Laboratory Evolution Method to Accelerate Autotrophic Metabolism.
    Zhang T; Tremblay PL
    Methods Mol Biol; 2018; 1671():149-161. PubMed ID: 29170958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological carbon monoxide conversion to acetate production by mixed culture.
    Nam CW; Jung KA; Park JM
    Bioresour Technol; 2016 Jul; 211():478-85. PubMed ID: 27035481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products.
    Tremblay PL; Höglund D; Koza A; Bonde I; Zhang T
    Sci Rep; 2015 Nov; 5():16168. PubMed ID: 26530351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans.
    Parshina SN; Kijlstra S; Henstra AM; Sipma J; Plugge CM; Stams AJ
    Appl Microbiol Biotechnol; 2005 Aug; 68(3):390-6. PubMed ID: 16133342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.