These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 29550)
1. Differential responsiveness of central noradrenergic and dopaminergic neuron tyrosine hydroxylase to hypophysectomy, ACTH and glucocorticoid administration. Van Loon GR; Sole MJ; Kamble A; Kim C; Green S Ann N Y Acad Sci; 1977 Oct; 297():284-94. PubMed ID: 29550 [TBL] [Abstract][Full Text] [Related]
2. Catecholamines: effects of ACTH and adrenal corticoids. Axelrod J Ann N Y Acad Sci; 1977 Oct; 297():275-83. PubMed ID: 29549 [No Abstract] [Full Text] [Related]
3. Influence of ACTH on tyrosine hydroxylase activity in the locus coeruleus of mouse brain. Markey KA; Sze PY Neuroendocrinology; 1984 Apr; 38(4):269-75. PubMed ID: 6145110 [TBL] [Abstract][Full Text] [Related]
4. Tyrosine hydroxylase and dopamine-beta-hydroxylase: distribution in discrete areas of the rat limbic system. Saavedra JM; Zivin J Brain Res; 1976 Apr; 105(3):517-24. PubMed ID: 4197 [TBL] [Abstract][Full Text] [Related]
5. Regional development of norepinephrine, dopamine-beta-hydroxylase and tyrosine hydroxylase in the rat brain subsequent to neonatal treatment with subcutaneous 6-hydroxydopamine. Schmidt RH; Bhatnagar RK Brain Res; 1979 Apr; 166(2):293-308. PubMed ID: 34468 [TBL] [Abstract][Full Text] [Related]
6. Dopamine-beta-hydroxylase inhibition acutely stimulates rats hypothalamic noradrenaline and dopamine neuronal activity as assessed from metabolic ratios and circulating glucose and ACTH responses. Smythe GA; Bradshaw JE; Gleeson RM; Nicholson MV Life Sci; 1985 Sep; 37(9):841-7. PubMed ID: 2993777 [TBL] [Abstract][Full Text] [Related]
7. Immunocytochemical distribution of catecholamine-synthesizing neurons in the hypothalamus and pituitary gland of pigs: tyrosine hydroxylase and dopamine-beta-hydroxylase. Leshin LS; Kraeling RR; Kineman RD; Barb CR; Rampacek GB J Comp Neurol; 1996 Jan; 364(1):151-68. PubMed ID: 8789282 [TBL] [Abstract][Full Text] [Related]
8. Divergent prolactin and pituitary-adrenal activity in rats selectively bred for different dopamine responsiveness. Rots NY; Cools AR; Oitzl MS; de Jong J; Sutanto W; de Kloet ER Endocrinology; 1996 May; 137(5):1678-86. PubMed ID: 8612501 [TBL] [Abstract][Full Text] [Related]
9. The catecholaminergic system of the quail brain: immunocytochemical studies of dopamine beta-hydroxylase and tyrosine hydroxylase. Bailhache T; Balthazart J J Comp Neurol; 1993 Mar; 329(2):230-56. PubMed ID: 8095939 [TBL] [Abstract][Full Text] [Related]
10. Collateral sprouting in central mesolimbic dopamine neurons: biochemical and immunocytochemical evidence of changes in the activity and distrubution of tyrosine hydroxylase in terminal fields and in cell bodies of A10 neurons. Gilad GM; Reis DJ Brain Res; 1979 Jan; 160(1):17-26. PubMed ID: 31232 [TBL] [Abstract][Full Text] [Related]
11. Effect of surgical isolation of the hypothalamus on its neurotransmitter content. Brownstein MJ; Palkovits M; Tappaz ML; Saavedra JM; Kizer JS Brain Res; 1976 Nov; 117(2):287-95. PubMed ID: 11035 [TBL] [Abstract][Full Text] [Related]
12. Caffeine ingestion by rats increases noradrenaline turnover and results in self-biting. Miñana MD; Grisolía S J Neurochem; 1986 Sep; 47(3):728-32. PubMed ID: 2874191 [TBL] [Abstract][Full Text] [Related]
13. Effect of variations in adrenocortical function on dopamine beta-hydroxylase and norepinephrine in the brain of the rat. Shen JT; Ganong WF J Pharmacol Exp Ther; 1976 Dec; 199(3):639-48. PubMed ID: 994021 [TBL] [Abstract][Full Text] [Related]
14. Ontogeny of tyrosine hydroxylase and dopamine-beta-hydroxylase activity in discrete limbic and hypothalamic structures of female rats. Krieger A; Wuttke W Brain Res; 1980 Jul; 193(1):181-8. PubMed ID: 6103742 [No Abstract] [Full Text] [Related]
15. The use of neurotoxins to characterize the rates and subcellular distributions of axonally transported dopamine-beta-hydroxylase, tyrosine hydroxylase and norepinephrine in the rat brain. Levin BE Brain Res; 1979 May; 168(2):331-50. PubMed ID: 87244 [TBL] [Abstract][Full Text] [Related]
16. Different acute effects of the tyrosine hydroxylase inhibitors alpha-methyl-p-tyrosine and 3-iodo-L-tyrosine on hypothalamic noradrenaline activity and adrenocorticotrophin release in the rat. Smythe GA; Bradshaw JE Aust J Biol Sci; 1983; 36(5-6):519-23. PubMed ID: 6144300 [TBL] [Abstract][Full Text] [Related]
17. Catecholamine-containing neurons in the sheep brainstem and diencephalon: immunohistochemical study with tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) antibodies. Tillet Y; Thibault J J Comp Neurol; 1989 Dec; 290(1):69-104. PubMed ID: 2574197 [TBL] [Abstract][Full Text] [Related]
18. Influence on turnover and level of hypothalamic noradrenaline by a new antihypertensive agent (GYKI 11679). Huszti Z; Szilágyi G; Mátyus P; Kasztreiner E J Neurochem; 1981 Nov; 37(5):1272-81. PubMed ID: 6117605 [TBL] [Abstract][Full Text] [Related]
19. The effect of castration, thyroidectomy and haloperidol upon the turnover rates of dopamine and norepinephrine and the kinetic properties of tyrosine hydroxylase in discrete hypothalamic nuclei of the male rat. Kizer JS; Humm J; Nicholson G; Greeley G; Youngblood W Brain Res; 1978 May; 146(1):95-107. PubMed ID: 25696 [TBL] [Abstract][Full Text] [Related]
20. Reserpine selectively increases tyrosine hydroxylase and dopamine-beta-hydroxylase enzyme protein in central noradrenergic neurons. Reis DJ; Joh TH; Ross RA; Pickel VM Brain Res; 1974 Dec; 81(2):380-6. PubMed ID: 4154798 [No Abstract] [Full Text] [Related] [Next] [New Search]