These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 29550068)

  • 1. Lead extraction and glass-ceramics synthesis from waste cathode ray tube funnel glass through cooperative smelting process with coal fly ash.
    Lv J; Yang H; Jin Z; Zhao M
    Waste Manag; 2018 Jun; 76():687-696. PubMed ID: 29550068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of lead extraction from waste Cathode-Ray-Tubes (CRT) funnel glass through a lead smelting process.
    Lv J; Yang H; Jin Z; Ma Z; Song Y
    Waste Manag; 2016 Nov; 57():198-206. PubMed ID: 27211314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lead removal evolution from hazardous waste cathode ray tube funnel glass under enhancement of red mud melting and synthesizing value-added glass-ceramics via reutilization of silicate resources.
    Wang F; Xu B; Yang B; Shi T
    J Hazard Mater; 2022 May; 429():128334. PubMed ID: 35091191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.
    Zhang Z; Zhang L; Li A
    Waste Manag; 2015 Dec; 46():316-21. PubMed ID: 26387050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lead extraction from Cathode Ray Tube (CRT) funnel glass: Reaction mechanisms in thermal reduction with addition of carbon (C).
    Lu X; Ning XA; Chen D; Chuang KH; Shih K; Wang F
    Waste Manag; 2018 Jun; 76():671-678. PubMed ID: 29650298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of lead oxide nanoparticles from cathode-ray tube funnel glass by self-propagating method.
    Wang Y; Zhu J
    J Hazard Mater; 2012 May; 215-216():90-7. PubMed ID: 22410722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.
    Mingfei X; Yaping W; Jun L; Hua X
    J Hazard Mater; 2016 Mar; 305():51-58. PubMed ID: 26642446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy efficient production of glass-ceramics using photovoltaic (P/V) glass and lignite fly ash.
    Savvilotidou V; Kritikaki A; Stratakis A; Komnitsas K; Gidarakos E
    Waste Manag; 2019 May; 90():46-58. PubMed ID: 31088673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of metallic lead from cathode ray tube (CRT) funnel glass by thermal reduction with metallic iron.
    Lu X; Shih K; Liu C; Wang F
    Environ Sci Technol; 2013 Sep; 47(17):9972-8. PubMed ID: 23915263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of coal fly ash in the glass-ceramic production.
    Zhang J; Dong W; Li J; Qiao L; Zheng J; Sheng J
    J Hazard Mater; 2007 Oct; 149(2):523-6. PubMed ID: 17764838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead recovery from cathode ray tube funnel glass with mechanical activation.
    Yuan W; Li J; Zhang Q; Saito F; Yang B
    J Air Waste Manag Assoc; 2013 Jan; 63(1):2-10. PubMed ID: 23447859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.
    Zhang Z; Zhang L; Li A
    Waste Manag; 2015 Apr; 38():185-93. PubMed ID: 25649918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the properties of glass, glass-ceramic and ceramic materials produced from coal fly ash.
    Erol M; Küçükbayrak S; Ersoy-Meriçboyu A
    J Hazard Mater; 2008 May; 153(1-2):418-25. PubMed ID: 17913359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of lead recovery efficiency from waste CRT funnel glass by chlorinating volatilization process.
    Erzat A; Zhang FS
    Environ Technol; 2014; 35(21-24):2774-80. PubMed ID: 25176480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of lead from cathode ray tube funnel glass by combined thermal treatment and leaching processes.
    Okada T; Nishimura F; Yonezawa S
    Waste Manag; 2015 Nov; 45():343-50. PubMed ID: 26022339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of lead from waste CRT funnel glass by generating lead sulfide - An approach for electronic waste management.
    Hu B; Hui W
    Waste Manag; 2017 Sep; 67():253-258. PubMed ID: 28587804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lead recovery and high silica glass powder synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced glass phase separation process.
    Xing M; Fu Z; Wang Y; Wang J; Zhang Z
    J Hazard Mater; 2017 Jan; 322(Pt B):479-487. PubMed ID: 27745960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of nucleated glass-ceramics using oil shale fly ash.
    Luan J; Li A; Su T; Cui X
    J Hazard Mater; 2010 Jan; 173(1-3):427-32. PubMed ID: 19740599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a novel recycling system for waste cathode ray tube funnel glass based on the integration of nanoscale Fe
    Wang C; Yao D; Liu Y; Wu Y; Shen J
    Waste Manag; 2018 Jun; 76():679-686. PubMed ID: 29643009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glass-ceramic from mixtures of bottom ash and fly ash.
    Vu DH; Wang KS; Chen JH; Nam BX; Bac BH
    Waste Manag; 2012 Dec; 32(12):2306-14. PubMed ID: 22748917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.