These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 29550139)
1. Short communication: Improving the accuracy of genomic prediction of body conformation traits in Chinese Holsteins using markers derived from high-density marker panels. Song H; Li L; Ma P; Zhang S; Su G; Lund MS; Zhang Q; Ding X J Dairy Sci; 2018 Jun; 101(6):5250-5254. PubMed ID: 29550139 [TBL] [Abstract][Full Text] [Related]
2. Increasing imputation and prediction accuracy for Chinese Holsteins using joint Chinese-Nordic reference population. Ma P; Lund MS; Ding X; Zhang Q; Su G J Anim Breed Genet; 2014 Dec; 131(6):462-72. PubMed ID: 25099946 [TBL] [Abstract][Full Text] [Related]
3. Comparison of genomic predictions using medium-density (∼54,000) and high-density (∼777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations. Su G; Brøndum RF; Ma P; Guldbrandtsen B; Aamand GP; Lund MS J Dairy Sci; 2012 Aug; 95(8):4657-65. PubMed ID: 22818480 [TBL] [Abstract][Full Text] [Related]
4. The feasibility of using low-density marker panels for genotype imputation and genomic prediction of crossbred dairy cattle of East Africa. Aliloo H; Mrode R; Okeyo AM; Ni G; Goddard ME; Gibson JP J Dairy Sci; 2018 Oct; 101(10):9108-9127. PubMed ID: 30077450 [TBL] [Abstract][Full Text] [Related]
5. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population. Ma P; Lund MS; Aamand GP; Su G J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255 [TBL] [Abstract][Full Text] [Related]
6. Genomic relationships based on X chromosome markers and accuracy of genomic predictions with and without X chromosome markers. Su G; Guldbrandtsen B; Aamand GP; Strandén I; Lund MS Genet Sel Evol; 2014 Jul; 46(1):47. PubMed ID: 25080199 [TBL] [Abstract][Full Text] [Related]
7. Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle. Magnabosco CU; Lopes FB; Fragoso RC; Eifert EC; Valente BD; Rosa GJ; Sainz RD J Anim Sci; 2016 Jul; 94(7):2752-60. PubMed ID: 27482662 [TBL] [Abstract][Full Text] [Related]
8. Assets of imputation to ultra-high density for productive and functional traits. Jiménez-Montero JA; Gianola D; Weigel K; Alenda R; González-Recio O J Dairy Sci; 2013 Sep; 96(9):6047-58. PubMed ID: 23810591 [TBL] [Abstract][Full Text] [Related]
9. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction. Brøndum RF; Su G; Janss L; Sahana G; Guldbrandtsen B; Boichard D; Lund MS J Dairy Sci; 2015 Jun; 98(6):4107-16. PubMed ID: 25892697 [TBL] [Abstract][Full Text] [Related]
10. Using markers with large effect in genetic and genomic predictions. Lopes MS; Bovenhuis H; van Son M; Nordbø Ø; Grindflek EH; Knol EF; Bastiaansen JW J Anim Sci; 2017 Jan; 95(1):59-71. PubMed ID: 28177367 [TBL] [Abstract][Full Text] [Related]
11. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. Erbe M; Hayes BJ; Matukumalli LK; Goswami S; Bowman PJ; Reich CM; Mason BA; Goddard ME J Dairy Sci; 2012 Jul; 95(7):4114-29. PubMed ID: 22720968 [TBL] [Abstract][Full Text] [Related]
12. Marker selection and genomic prediction of economically important traits using imputed high-density genotypes for 5 breeds of dairy cattle. Al-Khudhair A; VanRaden PM; Null DJ; Li B J Dairy Sci; 2021 Apr; 104(4):4478-4485. PubMed ID: 33612229 [TBL] [Abstract][Full Text] [Related]
13. Short communication: Single-step genomic evaluation of milk production traits using multiple-trait random regression model in Chinese Holsteins. Kang H; Ning C; Zhou L; Zhang S; Yan Q; Liu JF J Dairy Sci; 2018 Dec; 101(12):11143-11149. PubMed ID: 30268613 [TBL] [Abstract][Full Text] [Related]
14. Accuracy of genomic predictions for feed efficiency traits of beef cattle using 50K and imputed HD genotypes. Lu D; Akanno EC; Crowley JJ; Schenkel F; Li H; De Pauw M; Moore SS; Wang Z; Li C; Stothard P; Plastow G; Miller SP; Basarab JA J Anim Sci; 2016 Apr; 94(4):1342-53. PubMed ID: 27135994 [TBL] [Abstract][Full Text] [Related]
15. Comparison of different methods for imputing genome-wide marker genotypes in Swedish and Finnish Red Cattle. Ma P; Brøndum RF; Zhang Q; Lund MS; Su G J Dairy Sci; 2013 Jul; 96(7):4666-77. PubMed ID: 23684022 [TBL] [Abstract][Full Text] [Related]
16. Genomic predictions for economically important traits in Brazilian Braford and Hereford beef cattle using true and imputed genotypes. Piccoli ML; Brito LF; Braccini J; Cardoso FF; Sargolzaei M; Schenkel FS BMC Genet; 2017 Jan; 18(1):2. PubMed ID: 28100165 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide association studies and genomic prediction of breeding values for calving performance and body conformation traits in Holstein cattle. Abo-Ismail MK; Brito LF; Miller SP; Sargolzaei M; Grossi DA; Moore SS; Plastow G; Stothard P; Nayeri S; Schenkel FS Genet Sel Evol; 2017 Nov; 49(1):82. PubMed ID: 29115939 [TBL] [Abstract][Full Text] [Related]
18. Reliabilities of Genomic Prediction for Young Stock Survival Traits Using 54K SNP Chip Augmented With Additional Single-Nucleotide Polymorphisms Selected From Imputed Whole-Genome Sequencing Data. Gebreyesus G; Lund MS; Sahana G; Su G Front Genet; 2021; 12():667300. PubMed ID: 34349779 [TBL] [Abstract][Full Text] [Related]
19. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances. Su G; Christensen OF; Janss L; Lund MS J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495 [TBL] [Abstract][Full Text] [Related]