These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29550253)

  • 21. A quantitative assessment of hormetic responses of plants to ozone.
    Agathokleous E; Araminiene V; Belz RG; Calatayud V; De Marco A; Domingos M; Feng Z; Hoshika Y; Kitao M; Koike T; Paoletti E; Saitanis CJ; Sicard P; Calabrese EJ
    Environ Res; 2019 Sep; 176():108527. PubMed ID: 31203049
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water.
    Merschel G; Bau M
    Sci Total Environ; 2015 Nov; 533():91-101. PubMed ID: 26151653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.
    Thomas PJ; Carpenter D; Boutin C; Allison JE
    Chemosphere; 2014 Feb; 96():57-66. PubMed ID: 23978671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hormetic dose-responses in nanotechnology studies.
    Iavicoli I; Fontana L; Leso V; Calabrese EJ
    Sci Total Environ; 2014 Jul; 487():361-74. PubMed ID: 24793332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A critique of the use of hormesis in risk assessment.
    Kitchin KT; Drane JW
    Hum Exp Toxicol; 2005 May; 24(5):249-53. PubMed ID: 16004188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biphasic dose responses in biology, toxicology and medicine: accounting for their generalizability and quantitative features.
    Calabrese EJ
    Environ Pollut; 2013 Nov; 182():452-60. PubMed ID: 23992683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis for effects of lanthanum (III) on the aboveground modules and respiration of soybean populations.
    Zhang R; Yin X; Ding H; Wang L; Zhou Q; Huang X
    Ecotoxicol Environ Saf; 2019 Jan; 167():196-203. PubMed ID: 30340084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hormesis within a mechanistic context.
    Calabrese EJ
    Homeopathy; 2015 Apr; 104(2):90-6. PubMed ID: 25869973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hormesis-induced gap between the guidelines and reality in ecological risk assessment.
    Zhang X; Lin Z
    Chemosphere; 2020 Mar; 243():125348. PubMed ID: 31765892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A swinging seesaw as a novel model mechanism for time-dependent hormesis under dose-dependent stimulatory and inhibitory effects: A case study on the toxicity of antibacterial chemicals to Aliivibrio fischeri.
    Sun H; Calabrese EJ; Zheng M; Wang D; Pan Y; Lin Z; Liu Y
    Chemosphere; 2018 Aug; 205():15-23. PubMed ID: 29679784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. U-Shaped Relationship of Rare Earth Element Lanthanum and Oral Cancer Risk: A Propensity Score-Based Study in the Southeast of China.
    Chen F; Deng Q; Wu Y; Wu Y; Chen J; Chen Y; Lin L; Qiu Y; Pan L; Zheng X; Wei L; Liu F; He B; Wang J
    Front Public Health; 2022; 10():905690. PubMed ID: 35646760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sustainability of rare earth elements chain: from production to food - a review.
    Turra C
    Int J Environ Health Res; 2018 Feb; 28(1):23-42. PubMed ID: 29241344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling non-monotonic dose-response relationships: model evaluation and hormetic quantities exploration.
    Zhu XW; Liu SS; Qin LT; Chen F; Liu HL
    Ecotoxicol Environ Saf; 2013 Mar; 89():130-6. PubMed ID: 23266374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of exogenous lanthanum(III) exposure on the positive interaction between mutually beneficial populations.
    Huang J; Hu X; Wang L; Zhou Q; Huang X
    Chemosphere; 2020 Mar; 242():125142. PubMed ID: 31669987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pollen biology and hormesis: Pollen germination and pollen tube elongation.
    Calabrese EJ; Agathokleous E
    Sci Total Environ; 2021 Mar; 762():143072. PubMed ID: 33139003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective toxin effects on faster and slower growing individuals in the formation of hormesis at the population level - A case study with Lactuca sativa and PCIB.
    Belz RG; Sinkkonen A
    Sci Total Environ; 2016 Oct; 566-567():1205-1214. PubMed ID: 27267716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating the frequency of hormesis and other non-monotonic responses in plants experiencing road traffic pollution in urban areas and experimental pollutant exposure.
    Erofeeva EA
    Environ Monit Assess; 2020 Jun; 192(7):460. PubMed ID: 32594326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting biphasic responses in binary mixtures: Pelargonic acid versus glyphosate.
    Belz RG; Piepho HP
    Chemosphere; 2017 Jul; 178():88-98. PubMed ID: 28319746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption and mineralization of REE-lanthanum onto bacterial cell surface.
    Cheng Y; Zhang L; Bian X; Zuo H; Dong H
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22334-22339. PubMed ID: 28699006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hormesis and plant biology.
    Calabrese EJ; Blain RB
    Environ Pollut; 2009 Jan; 157(1):42-8. PubMed ID: 18790554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.