BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

653 related articles for article (PubMed ID: 29550290)

  • 21. Exploring the raft-hypothesis by probing planar bilayer patches of free-standing giant vesicles at nanoscale resolution, with and without Na,K-ATPase.
    Bhatia T; Cornelius F; Ipsen JH
    Biochim Biophys Acta; 2016 Dec; 1858(12):3041-3049. PubMed ID: 27616046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Actively maintained lipid nanodomains in biomembranes.
    Gómez J; Sagués F; Reigada R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021907. PubMed ID: 18352051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supported lipid bilayers as models for studying membrane domains.
    Kiessling V; Yang ST; Tamm LK
    Curr Top Membr; 2015; 75():1-23. PubMed ID: 26015279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rafts making and rafts braking: how plant flavonoids may control membrane heterogeneity.
    Tarahovsky YS; Muzafarov EN; Kim YA
    Mol Cell Biochem; 2008 Jul; 314(1-2):65-71. PubMed ID: 18414995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capturing suboptical dynamic structures in lipid bilayer patches formed from free-standing giant unilamellar vesicles.
    Bhatia T; Cornelius F; Ipsen JH
    Nat Protoc; 2017 Aug; 12(8):1563-1575. PubMed ID: 28703789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visualization of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone.
    Klymchenko AS; Oncul S; Didier P; Schaub E; Bagatolli L; Duportail G; Mély Y
    Biochim Biophys Acta; 2009 Feb; 1788(2):495-9. PubMed ID: 19027712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The intriguing role of rhamnolipids on plasma membrane remodelling: From lipid rafts to membrane budding.
    Come B; Donato M; Potenza LF; Mariani P; Itri R; Spinozzi F
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):669-677. PubMed ID: 32916572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural determinants for partitioning of lipids and proteins between coexisting fluid phases in giant plasma membrane vesicles.
    Sengupta P; Hammond A; Holowka D; Baird B
    Biochim Biophys Acta; 2008 Jan; 1778(1):20-32. PubMed ID: 17936718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers.
    Meinhardt S; Vink RL; Schmid F
    Proc Natl Acad Sci U S A; 2013 Mar; 110(12):4476-81. PubMed ID: 23487780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stability of lipid domains.
    García-Sáez AJ; Schwille P
    FEBS Lett; 2010 May; 584(9):1653-8. PubMed ID: 20036662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Segregative clustering of Lo and Ld membrane microdomains induced by local pH gradients in GM1-containing giant vesicles: a lipid model for cellular polarization.
    Staneva G; Puff N; Seigneuret M; Conjeaud H; Angelova MI
    Langmuir; 2012 Nov; 28(47):16327-37. PubMed ID: 23121205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of Aminophospholipids in the Formation of Lipid Rafts in Model Membranes.
    Hazarosova R; Momchilova A; Koumanov K; Petkova D; Staneva G
    J Fluoresc; 2015 Jul; 25(4):1037-43. PubMed ID: 26076930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy.
    Kahya N
    Chem Phys Lipids; 2006 Jun; 141(1-2):158-68. PubMed ID: 16696961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hemagglutinin of influenza virus partitions into the nonraft domain of model membranes.
    Nikolaus J; Scolari S; Bayraktarov E; Jungnick N; Engel S; Pia Plazzo A; Stöckl M; Volkmer R; Veit M; Herrmann A
    Biophys J; 2010 Jul; 99(2):489-98. PubMed ID: 20643067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence probe partitioning between Lo/Ld phases in lipid membranes.
    Baumgart T; Hunt G; Farkas ER; Webb WW; Feigenson GW
    Biochim Biophys Acta; 2007 Sep; 1768(9):2182-94. PubMed ID: 17588529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visualizing the localization of sulfoglycolipids in lipid raft domains in model membranes and sperm membrane extracts.
    Weerachatyanukul W; Probodh I; Kongmanas K; Tanphaichitr N; Johnston LJ
    Biochim Biophys Acta; 2007 Feb; 1768(2):299-310. PubMed ID: 17045957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lateral organization in lipid-cholesterol mixed bilayers.
    Pandit SA; Khelashvili G; Jakobsson E; Grama A; Scott HL
    Biophys J; 2007 Jan; 92(2):440-7. PubMed ID: 17071661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
    Konyakhina TM; Feigenson GW
    Biochim Biophys Acta; 2016 Jan; 1858(1):153-61. PubMed ID: 26525664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue.
    Honigmann A; Mueller V; Hell SW; Eggeling C
    Faraday Discuss; 2013; 161():77-89; discussion 113-50. PubMed ID: 23805739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.
    Marquês JT; Viana AS; De Almeida RF
    Biochim Biophys Acta; 2011 Jan; 1808(1):405-14. PubMed ID: 20955684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.