These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 29550396)
21. Enhanced production of butanol and acetoin by heterologous expression of an acetolactate decarboxylase in Clostridium acetobutylicum. Shen X; Liu D; Liu J; Wang Y; Xu J; Yang Z; Guo T; Niu H; Ying H Bioresour Technol; 2016 Sep; 216():601-6. PubMed ID: 27285575 [TBL] [Abstract][Full Text] [Related]
22. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Lütke-Eversloh T; Bahl H Curr Opin Biotechnol; 2011 Oct; 22(5):634-47. PubMed ID: 21377350 [TBL] [Abstract][Full Text] [Related]
23. Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. Xu M; Zhao J; Yu L; Yang ST J Biotechnol; 2017 Dec; 263():36-44. PubMed ID: 29050876 [TBL] [Abstract][Full Text] [Related]
24. Simultaneous production of butanol and acetoin by metabolically engineered Clostridium acetobutylicum. Liu D; Chen Y; Ding F; Guo T; Xie J; Zhuang W; Niu H; Shi X; Zhu C; Ying H Metab Eng; 2015 Jan; 27():107-114. PubMed ID: 25461831 [TBL] [Abstract][Full Text] [Related]
25. Reaction engineering studies of acetone-butanol-ethanol fermentation with Clostridium acetobutylicum. Schmidt M; Weuster-Botz D Biotechnol J; 2012 May; 7(5):656-61. PubMed ID: 22213682 [TBL] [Abstract][Full Text] [Related]
26. Synergistic effect of calcium and zinc on glucose/xylose utilization and butanol tolerance of Clostridium acetobutylicum. Wu Y; Xue C; Chen L; Yuan W; Bai F FEMS Microbiol Lett; 2016 Mar; 363(5):fnw023. PubMed ID: 26850441 [TBL] [Abstract][Full Text] [Related]
27. Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol:acetone ratios. Hönicke D; Janssen H; Grimmler C; Ehrenreich A; Lütke-Eversloh T N Biotechnol; 2012 May; 29(4):485-93. PubMed ID: 22285530 [TBL] [Abstract][Full Text] [Related]
28. Trends in Systems Biology for the Analysis and Engineering of Clostridium acetobutylicum Metabolism. Yoo M; Nguyen NP; Soucaille P Trends Microbiol; 2020 Feb; 28(2):118-140. PubMed ID: 31627989 [TBL] [Abstract][Full Text] [Related]
29. Improvement of the butanol production selectivity and butanol to acetone ratio (B:A) by addition of electron carriers in the batch culture of a new local isolate of Clostridium acetobutylicum YM1. Nasser Al-Shorgani NK; Kalil MS; Wan Yusoff WM; Shukor H; Hamid AA Anaerobe; 2015 Dec; 36():65-72. PubMed ID: 26439644 [TBL] [Abstract][Full Text] [Related]
30. Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity. Wang S; Zhu Y; Zhang Y; Li Y Appl Microbiol Biotechnol; 2012 Feb; 93(3):1021-30. PubMed ID: 21935591 [TBL] [Abstract][Full Text] [Related]
31. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition. Luo H; Ge L; Zhang J; Ding J; Chen R; Shi Z Bioresour Technol; 2016 Jan; 200():111-20. PubMed ID: 26476171 [TBL] [Abstract][Full Text] [Related]
33. Characterization of a butanol-acetone-producing Clostridium strain and identification of its solventogenic genes. Chua TK; Liang DW; Qi C; Yang KL; He J Bioresour Technol; 2013 May; 135():372-8. PubMed ID: 23069614 [TBL] [Abstract][Full Text] [Related]
34. Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production. Lee JY; Jang YS; Lee J; Papoutsakis ET; Lee SY Biotechnol J; 2009 Oct; 4(10):1432-40. PubMed ID: 19830716 [TBL] [Abstract][Full Text] [Related]
35. Integration of chemical catalysis with extractive fermentation to produce fuels. Anbarasan P; Baer ZC; Sreekumar S; Gross E; Binder JB; Blanch HW; Clark DS; Toste FD Nature; 2012 Nov; 491(7423):235-9. PubMed ID: 23135469 [TBL] [Abstract][Full Text] [Related]
36. Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Wu YD; Xue C; Chen LJ; Bai FW J Biotechnol; 2013 May; 165(1):18-21. PubMed ID: 23458964 [TBL] [Abstract][Full Text] [Related]
37. Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Sillers R; Chow A; Tracy B; Papoutsakis ET Metab Eng; 2008 Nov; 10(6):321-32. PubMed ID: 18725313 [TBL] [Abstract][Full Text] [Related]
38. Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway. Lehmann D; Lütke-Eversloh T Metab Eng; 2011 Sep; 13(5):464-73. PubMed ID: 21549853 [TBL] [Abstract][Full Text] [Related]
39. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Jiang Y; Xu C; Dong F; Yang Y; Jiang W; Yang S Metab Eng; 2009; 11(4-5):284-91. PubMed ID: 19560551 [TBL] [Abstract][Full Text] [Related]
40. Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum. Amador-Noguez D; Brasg IA; Feng XJ; Roquet N; Rabinowitz JD Appl Environ Microbiol; 2011 Nov; 77(22):7984-97. PubMed ID: 21948824 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]