These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Silk fibroin reactive inks for 3D printing crypt-like structures. Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975 [TBL] [Abstract][Full Text] [Related]
3. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting. Kim SH; Kim DY; Lim TH; Park CH Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090 [TBL] [Abstract][Full Text] [Related]
4. 3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin. Mu X; Gonzalez-Obeso C; Xia Z; Sahoo JK; Li G; Cebe P; Zhang YS; Kaplan DL Molecules; 2022 Mar; 27(7):. PubMed ID: 35408547 [TBL] [Abstract][Full Text] [Related]
6. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering. Singh YP; Bandyopadhyay A; Mandal BB ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678 [TBL] [Abstract][Full Text] [Related]
7. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing. Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719 [TBL] [Abstract][Full Text] [Related]
8. Silk-Based Bioinks for 3D Bioprinting. Chawla S; Midha S; Sharma A; Ghosh S Adv Healthc Mater; 2018 Apr; 7(8):e1701204. PubMed ID: 29359861 [TBL] [Abstract][Full Text] [Related]
9. Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials. Jin Y; Compaan A; Chai W; Huang Y ACS Appl Mater Interfaces; 2017 Jun; 9(23):20057-20066. PubMed ID: 28534614 [TBL] [Abstract][Full Text] [Related]
10. 3D Bioprinting of Self-Standing Silk-Based Bioink. Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585 [TBL] [Abstract][Full Text] [Related]
11. Direct Femtosecond Laser Printing of Silk Fibroin Microstructures. Santos MV; Paula KT; de Andrade MB; Gomes EM; Marques LF; Ribeiro SJL; Mendonça CR ACS Appl Mater Interfaces; 2020 Nov; 12(44):50033-50038. PubMed ID: 33090755 [TBL] [Abstract][Full Text] [Related]
12. Comparative Study of Silk Fibroin-Based Hydrogels and Their Potential as Material for 3-Dimensional (3D) Printing. Pudkon W; Laomeephol C; Damrongsakkul S; Kanokpanont S; Ratanavaraporn J Molecules; 2021 Jun; 26(13):. PubMed ID: 34202196 [TBL] [Abstract][Full Text] [Related]
13. Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants. Costa JB; Silva-Correia J; Oliveira JM; Reis RL Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 29106065 [TBL] [Abstract][Full Text] [Related]
15. Three-Dimensional Printing to Build Fibrous Protein Architectures. Qiao H; Zheng K Methods Mol Biol; 2021; 2347():177-189. PubMed ID: 34472065 [TBL] [Abstract][Full Text] [Related]
16. Three-Dimensional Printing of Customized Scaffolds with Polycaprolactone-Silk Fibroin Composites and Integration of Gingival Tissue-Derived Stem Cells for Personalized Bone Therapy. Bojedla SSR; Yeleswarapu S; Alwala AM; Nikzad M; Masood SH; Riza S; Pati F ACS Appl Bio Mater; 2022 Sep; 5(9):4465-4479. PubMed ID: 35994743 [TBL] [Abstract][Full Text] [Related]
17. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Rajput M; Mondal P; Yadav P; Chatterjee K Int J Biol Macromol; 2022 Mar; 202():644-656. PubMed ID: 35066028 [TBL] [Abstract][Full Text] [Related]
18. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654 [TBL] [Abstract][Full Text] [Related]